fbpx
Wikipedia

Serial ATA

"SATA" redirects here. For other uses, see SATA (disambiguation).
This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references.(February 2014) ()

Serial ATA (SATA, abbreviated from Serial AT Attachment) is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard to become the predominant interface for storage devices.

Serial ATA (SATA)
Year created2000
Created bySerial ATA Working Group
SupersedesParallel ATA (PATA)
SpeedHalf-duplex 1.5, 3.0 and 6.0 Gbit/s
StyleSerial
Hotplugging interfaceOptional
External interfaceOptional (eSATA)
Websitesata-io.org

Serial ATA industry compatibility specifications originate from the Serial ATA International Organization (SATA-IO) which are then promulgated by the INCITS Technical Committee T13, AT Attachment (INCITS T13).

Contents

SATA was announced in 2000 in order to provide several advantages over the earlier PATA interface such as reduced cable size and cost (seven conductors instead of 40 or 80), native hot swapping, faster data transfer through higher signaling rates, and more efficient transfer through an (optional) I/O queuing protocol. Revision 1.0 of the specification was released in January 2003.

Serial ATA industry compatibility specifications originate from the Serial ATA International Organization (SATA-IO). The SATA-IO group collaboratively creates, reviews, ratifies, and publishes the interoperability specifications, the test cases and plugfests. As with many other industry compatibility standards, the SATA content ownership is transferred to other industry bodies: primarily INCITS T13 and an INCITS T10 subcommittee (SCSI), a subgroup of T10 responsible for Serial Attached SCSI (SAS). The remainder of this article strives to use the SATA-IO terminology and specifications.

Before SATA's introduction in 2000, PATA was simply known as ATA. The "AT Attachment" (ATA) name originated after the 1984 release of the IBM Personal Computer AT, more commonly known as the IBM AT. The IBM AT's controller interface became a de facto industry interface for the inclusion of hard disks. "AT" was IBM's abbreviation for "Advanced Technology"; thus, many companies and organizations indicate SATA is an abbreviation of "Serial Advanced Technology Attachment". However, the ATA specifications simply use the name "AT Attachment", to avoid possible trademark issues with IBM.

SATA host adapters and devices communicate via a high-speed serial cable over two pairs of conductors. In contrast, parallel ATA (the redesignation for the legacy ATA specifications) uses a 16-bit wide data bus with many additional support and control signals, all operating at a much lower frequency. To ensure backward compatibility with legacy ATA software and applications, SATA uses the same basic ATA and ATAPI command sets as legacy ATA devices.

The world's first SATA hard disk drive is the Seagate Barracuda SATA V, which was released in Jan 2003.

SATA has replaced parallel ATA in consumer desktop and laptop computers; SATA's market share in the desktop PC market was 99% in 2008. PATA has mostly been replaced by SATA for any use; with PATA in declining use in industrial and embedded applications that use CompactFlash (CF) storage, which was designed around the legacy PATA standard. A 2008 standard, CFast, to replace CompactFlash is based on SATA.

SATA 6 Gbit/s host controller, a PCI Express ×1 card with Marvell chipset

Hot plug

The Serial ATA spec requires SATA device hot plugging; that is, devices that meet the specification are capable of insertion or removal of a device into or from a backplane connector (combined signal and power) that has power on. After insertion, the device initializes and then operates normally. Depending upon the operating system, the host may also initialize, resulting in a hot swap. The powered host and device do not need to be in an idle state for safe insertion and removal, although unwritten data may be lost when power is removed.

Unlike PATA, both SATA and eSATA support hot plugging by design. However, this feature requires proper support at the host, device (drive), and operating-system levels. In general, SATA devices fulfill the device-side hot-plugging requirements, and most SATA host adapters support this function.

For eSATA, hot plugging is supported in AHCI mode only. IDE mode does not support hot plugging.

Advanced Host Controller Interface

Advanced Host Controller Interface (AHCI) is an open host controller interface published and used by Intel, which has become a de facto standard. It allows the use of advanced features of SATA such as hotplug and native command queuing (NCQ). If AHCI is not enabled by the motherboard and chipset, SATA controllers typically operate in "IDE emulation" mode, which does not allow access to device features not supported by the ATA (also called IDE) standard.

Windows device drivers that are labeled as SATA are often running in IDE emulation mode unless they explicitly state that they are AHCI mode, in RAID mode, or a mode provided by a proprietary driver and command set that allowed access to SATA's advanced features before AHCI became popular. Modern versions of Microsoft Windows, Mac OS X, FreeBSD, Linux with version 2.6.19 onward, as well as Solaris and OpenSolaris, include support for AHCI, but earlier operating systems such as Windows XP do not. Even in those instances, a proprietary driver may have been created for a specific chipset, such as Intel's.

SATA revisions are typically designated with a dash followed by Roman numerals, e.g. "SATA-III", to avoid confusion with the speed, which is always displayed in Arabic numerals, e.g. "SATA 6 Gbit/s". The speeds given are the raw interface rate in Gbit/s including line code overhead, and the usable data rate in MB/s without overhead.

SATA revision 1.0 (1.5 Gbit/s, 150 MB/s, Serial ATA-150)

Revision 1.0a was released on January 7, 2003. First-generation SATA interfaces, now known as SATA 1.5 Gbit/s, communicate at a rate of 1.5 Gbit/s, and do not support Native Command Queuing (NCQ). Taking 8b/10b encoding overhead into account, they have an actual uncoded transfer rate of 1.2 Gbit/s (150 MB/s). The theoretical burst throughput of SATA 1.5 Gbit/s is similar to that of PATA/133, but newer SATA devices offer enhancements such as NCQ, which improve performance in a multitasking environment.

During the initial period after SATA 1.5 Gbit/s finalization, adapter and drive manufacturers used a "bridge chip" to convert existing PATA designs for use with the SATA interface. Bridged drives have a SATA connector, may include either or both kinds of power connectors, and, in general, perform identically to their native-SATA equivalents. However, most bridged drives lack support for some SATA-specific features such as NCQ. Native SATA products quickly took over the bridged products with the introduction of the second generation of SATA drives.[citation needed]

As of April 2010[update], the fastest 10,000 rpm SATA hard disk drives could transfer data at maximum (not average) rates of up to 157 MB/s, which is beyond the capabilities of the older PATA/133 specification and also exceeds the capabilities of SATA 1.5 Gbit/s.

SATA revision 2.0 (3 Gbit/s, 300 MB/s, Serial ATA-300)

SATA 2 connectors on a computer motherboard, all but two with cables plugged in. Note that there is no visible difference, other than the labeling, between SATA 1, SATA 2, and SATA 3 cables and connectors.

SATA revision 2.0 was released in April 2004, introducing Native Command Queuing (NCQ). It is backward compatible with SATA 1.5 Gbit/s.

Second-generation SATA interfaces run with a native transfer rate of 3.0 Gbit/s that, when accounted for the 8b/10b encoding scheme, equals to the maximum uncoded transfer rate of 2.4 Gbit/s (300 MB/s). The theoretical burst throughput of the SATA revision 2.0, which is also known as the SATA 3 Gbit/s, doubles the throughput of SATA revision 1.0.

All SATA data cables meeting the SATA spec are rated for 3.0 Gbit/s and handle modern mechanical drives without any loss of sustained and burst data transfer performance. However, high-performance flash-based drives can exceed the SATA 3 Gbit/s transfer rate; this is addressed with the SATA 6 Gbit/s interoperability standard.

SATA revision 2.5

Announced in August 2005, SATA revision 2.5 consolidated the specification to a single document.

SATA revision 2.6

Announced in February 2007, SATA revision 2.6 introduced the following features:

SATA revision 3.0 (6 Gbit/s, 600 MB/s, Serial ATA-600)

Serial ATA International Organization (SATA-IO) presented the draft specification of SATA 6 Gbit/s physical layer in July 2008, and ratified its physical layer specification on August 18, 2008. The full 3.0 standard was released on May 27, 2009.

Third-generation SATA interfaces run with a native transfer rate of 6.0 Gbit/s; taking 8b/10b encoding into account, the maximum uncoded transfer rate is 4.8 Gbit/s (600 MB/s). The theoretical burst throughput of SATA 6.0 Gbit/s is double that of SATA revision 2.0. It is backward compatible with SATA 3 Gbit/s and SATA 1.5 Gbit/s.

The SATA 3.0 specification contains the following changes:

  • 6 Gbit/s for scalable performance.
  • Continued compatibility with SAS, including SAS 6 Gbit/s, as per "a SAS domain may support attachment to and control of unmodified SATA devices connected directly into the SAS domain using the Serial ATA Tunneled Protocol (STP)" from the SATA Revision 3.0 Gold specification.
  • Isochronous Native Command Queuing (NCQ) streaming command to enable isochronous quality of service data transfers for streaming digital content applications.
  • An NCQ management feature that helps optimize performance by enabling host processing and management of outstanding NCQ commands.
  • Improved power management capabilities.
  • A small low insertion force (LIF) connector for more compact 1.8-inch storage devices.
  • A 7 mm optical disk drive profile for the slimline SATA connector (in addition to the existing 12.7 mm and 9.5 mm profiles).
  • Alignment with the INCITS ATA8-ACS standard.

In general, the enhancements are aimed at improving quality of service for video streaming and high-priority interrupts. In addition, the standard continues to support distances up to one meter. The newer speeds may require higher power consumption for supporting chips, though improved process technologies and power management techniques may mitigate this. The later specification can use existing SATA cables and connectors, though it was reported in 2008 that some OEMs were expected to upgrade host connectors for the higher speeds.

SATA revision 3.1

Released in July 2011, SATA revision 3.1 introduced or changed the following features:

  • mSATA, SATA for solid-state drives in mobile computing devices, a PCI Express Mini Card-like connector that is electrically SATA.
  • Zero-power optical disk drive, idle SATA optical drive draws no power.
  • Queued TRIM Command, improves solid-state drive performance.
  • Required Link Power Management, reduces overall system power demand of several SATA devices.
  • Hardware Control Features, enable host identification of device capabilities.
  • Universal Storage Module (USM), a new standard for cableless plug-in (slot) powered storage for consumer electronics devices.

SATA revision 3.2

Released in August 2013, SATA revision 3.2 introduced the following features:

  • The SATA Express specification defines an interface that combines both SATA and PCI Express buses, making it possible for both types of storage devices to coexist. By employing PCI Express, a much higher theoretical throughput of 1969 MB/s is possible.
  • The SATA M.2 standard is a small form factor implementation of the SATA Express interface, with the addition of an internal USB 3.0 port; see the M.2 (NGFF) section below for a more detailed summary.
  • microSSD introduces a ball grid array electrical interface for miniaturized, embedded SATA storage.
  • USM Slim reduces thickness of Universal Storage Module (USM) from 14.5 millimetres (0.57 inches) to 9 millimetres (0.35 inches).
  • DevSleep enables lower power consumption for always-on devices while they are in low-power modes such as InstantGo (which used to be known as Connected Standby).
  • Hybrid Information provides higher performance for solid-state hybrid drives.

SATA revision 3.3

Released in February 2016, SATA revision 3.3 introduced the following features:

  • Shingled magnetic recording (SMR) support that provides a 25 percent or greater increase in hard disk drive capacity by overlapping tracks on the media.
  • Power Disable feature (see PWDIS pin) allows for remote power cycling of SATA drives and a Rebuild Assist function that speeds up the rebuild process to help ease maintenance in the data center.
  • Transmitter Emphasis Specification increases interoperability and reliability between host and devices in electrically demanding environments.
  • An activity indicator and staggered spin-up can be controlled by the same pin, adding flexibility and providing users with more choices.

The new Power Disable feature (similar to the SAS Power Disable feature) uses Pin 3 of the SATA power connector. Some legacy power supplies that provide 3.3 V power on Pin 3 would force drives with Power Disable feature to get stuck in a hard reset condition preventing them from spinning up. The problem can usually be eliminated by using a simple “Molex to SATA” power adaptor to supply power to these drives.

SATA revision 3.4

Released in June 2018, SATA revision 3.4 introduced the following features that enable monitoring of device conditions and execution of housekeeping tasks, both with minimal impact on performance:

  • Durable/Ordered Write Notification: enables writing selected critical cache data to the media, minimizing impact on normal operations.
  • Device Temperature Monitoring: allows for active monitoring of SATA device temperature and other conditions without impacting normal operation by utilizing the SFF-8609 standard for out-of-band (OOB) communications.
  • Device Sleep Signal Timing: provides additional definition to enhance compatibility between manufacturers’ implementations.

SATA revision 3.5

Released in July 2020, SATA revision 3.5 Introduces features that enable increased performance benefits and promote greater integration of SATA devices and products with other industry I/O standards:

  • Device Transmit Emphasis for Gen 3 PHY: aligns SATA with other characteristics of other I/O measurement solutions to help SATA-IO members with testing and integration.
  • Defined Ordered NCQ Commands: allows the host to specify the processing relationships among queued commands and sets the order in which commands are processed in the queue.
  • Command Duration Limit Features: reduces latency by allowing the host to define quality of service categories, giving the host more granularity in controlling command properties. The feature helps align SATA with the "Fast Fail" requirements established by the Open Compute Project (OCP) and specified in the INCITS T13 Technical Committee standard.
2.5-inch SATA drive on top of a 3.5-inch SATA drive, close-up of data and power connectors. Also visible are 8 jumper pins on the 3.5-inch drive.

Connectors and cables present the most visible differences between SATA and parallel ATA drives. Unlike PATA, the same connectors are used on 3.5-inch (89 mm) SATA hard disks (for desktop and server computers) and 2.5-inch (64 mm) disks (for portable or small computers).

Standard SATA connectors for both data and power have a conductor pitch of 1.27 mm (0.050 inches). Low insertion force is required to mate a SATA connector. A smaller mini-SATA or mSATA connector is used by smaller devices such as 1.8-inch SATA drives, some DVD and Blu-ray drives, and mini SSDs.

A special eSATA connector is specified for external devices, and an optionally implemented provision for clips to hold internal connectors firmly in place. SATA drives may be plugged into SAS controllers and communicate on the same physical cable as native SAS disks, but SATA controllers cannot handle SAS disks.

Female SATA ports (on motherboards for example) are for use with SATA data cables that have locks or clips to prevent accidental unplugging. Some SATA cables have right- or left-angled connectors to ease connection to circuit boards.

Data connector

Standard connector, data segment
Pin # Mating Function
1 1st Ground
2 2nd A+ (transmit)
3 2nd A− (transmit)
4 1st Ground
5 2nd B− (receive)
6 2nd B+ (receive)
7 1st Ground
Coding notch

The SATA standard defines a data cable with seven conductors (three grounds and four active data lines in two pairs) and 8 mm wide wafer connectors on each end. SATA cables can have lengths up to 1 metre (3.3 ft), and connect one motherboard socket to one hard drive. PATA ribbon cables, in comparison, connect one motherboard socket to one or two hard drives, carry either 40 or 80 wires, and are limited to 45 centimetres (18 in) in length by the PATA specification; however, cables up to 90 centimetres (35 in) are readily available. Thus, SATA connectors and cables are easier to fit in closed spaces and reduce obstructions to air cooling. Although they are more susceptible to accidental unplugging and breakage than PATA, users can purchase cables that have a locking feature, whereby a small (usually metal) spring holds the plug in the socket.

SATA connectors may be straight, right-angled, or left angled. Angled connectors allow lower-profile connections. Right-angled (also called 90-degree) connectors lead the cable immediately away from the drive, on the circuit-board side. Left-angled (also called 270-degree) connectors lead the cable across the drive towards its top.

One of the problems associated with the transmission of data at high speed over electrical connections is described as noise, which is due to electrical coupling between data circuits and other circuits. As a result, the data circuits can both affect other circuits and be affected by them. Designers use a number of techniques to reduce the undesirable effects of such unintentional coupling. One such technique used in SATA links is differential signaling. This is an enhancement over PATA, which uses single-ended signaling. The use of fully shielded, dual coax conductors, with multiple ground connections, for each differential pair improves isolation between the channels and reduces the chances of lost data in difficult electrical environments.

  • A seven-pin SATA data cable (left-angled version of the connector)

  • SATA connector on a 3.5-inch hard drive, with data pins on the left and power pins on the right. The two different pin lengths ensure a specific mating order; the longer lengths are ground pins and make contact first.

  • SATA 3.0 (6 Gbit/s) cable showing the two foil shielded differential pairs.

Power connectors

Standard connector

Standard connector, power segment
Pin # Mating Function
Coding notch
1 3rd 3.3 V power
2 3rd
3 2nd Enter/exit Power Disable (PWDIS) mode
(3.3 V power, pre-charge prior to SATA 3.3)
4 1st Ground
5 2nd
6 2nd
7 2nd 5 V power, pre-charge
8 3rd 5 V power
9 3rd
10 2nd Ground
11 3rd Staggered spinup/activity
12 1st Ground
13 2nd 12 V power, pre-charge
14 3rd 12 V power
15 3rd
A fifteen-pin SATA power connector (this particular connector is missing the orange 3.3 V wire)

SATA specifies a different power connector than the four-pin Molex connector used on Parallel ATA (PATA) devices (and earlier small storage devices, going back to ST-506 hard disk drives and even to floppy disk drives that predated the IBM PC). It is a wafer-type connector, like the SATA data connector, but much wider (fifteen pins versus seven) to avoid confusion between the two. Some early SATA drives included the four-pin Molex power connector together with the new fifteen-pin connector, but most SATA drives now have only the latter.

The new SATA power connector contains many more pins for several reasons:

  • 3.3 V is supplied along with the traditional 5 V and 12 V supplies. However, very few drives actually use it, so they may be powered from a four-pin Molex connector with an adapter.
  • Pin 3 in SATA revision 3.3 has been redefined as PWDIS and is used to enter and exit the POWER DISABLE mode for compatibility with SAS specification. If Pin 3 is driven HIGH (2.1–3.6 V max), power to the drive circuitry is disabled. Drives with this feature do not power up in systems designed to SATA revision 3.1 or earlier. This is because Pin 3 driven HIGH prevents the drive from powering up.
  • To reduce resistance and increase current capability, each voltage is supplied by three pins in parallel, though one pin in each group is intended for precharging (see below). Each pin should be able to carry 1.5 A.
  • Five parallel pins provide a low-resistance ground connection.
  • Two ground pins and one pin for each supplied voltage support hot-plug precharging. Ground pins 4 and 12 in a hot-swap cable are the longest, so they make contact first when the connectors are mated. Drive power connector pins 3, 7, and 13 are longer than the others, so they make contact next. The drive uses them to charge its internal bypass capacitors through current-limiting resistances. Finally, the remaining power pins make contact, bypassing the resistances and providing a low-resistance source of each voltage. This two-step mating process avoids glitches to other loads and possible arcing or erosion of the SATA power-connector contacts.
  • Pin 11 can function for staggered spinup, activity indication, both, or nothing. It is an open-collector signal, which may be pulled down by the connector or the drive. If pulled down at the connector (as it is on most cable-style SATA power connectors), the drive spins up as soon as power is applied. If left floating, the drive waits until it is spoken to. This prevents many drives from spinning up simultaneously, which might draw too much power. The pin is also pulled low by the drive to indicate drive activity. This may be used to give feedback to the user through an LED.

Passive adapters are available that convert a four-pin Molex connector to a SATA power connector, providing the 5 V and 12 V lines available on the Molex connector, but not 3.3 V. There are also four-pin Molex-to-SATA power adapters that include electronics to additionally provide the 3.3 V power supply. However, most drives do not require the 3.3 V power line.

Slimline connector

Slimline connector, power segment
Pin # Mating Function
Coding notch
1 3rd Device presence
2 2nd 5 V Power
3 2nd
4 2nd Manufacturing diagnostic
5 1st Ground
6 1st

SATA 2.6 is the first revision that defined the slimline connector, intended for smaller form-factors such as notebook optical drives. Pin 1 of the slimline power connector, denoting device presence, is shorter than the others to allow hot-swapping. The slimline signal connector is identical and compatible with the standard version, while the power connector is reduced to six pins so it supplies only +5 V, and not +12 V or +3.3 V.

Low-cost adapters exist to convert from standard SATA to slimline SATA.

  • A six-pin slimline SATA power connector

  • The back of a SATA-based slimline optical drive

Micro connector

Micro connector, power segment
Pin # Mating Function
1 3rd 3.3 V power
2 2nd
3 1st Ground
4 1st
5 2nd 5 V power
6 3rd
7 3rd Reserved
Coding notch
8 3rd Vendor specific
9 2nd
A 1.8-inch (46 mm) micro SATA hard drive with numbered data and power pins on the connector.

The micro SATA connector (sometimes called uSATA or μSATA) originated with SATA 2.6, and is intended for 1.8-inch (46 mm) hard disk drives. There is also a micro data connector, similar in appearance but slightly thinner than the standard data connector.

eSATA

Not to be confused with SATAe.
The official eSATA logo
SATA (left) and eSATA (right) connectors
eSATA ports

Standardized in 2004, eSATA (e standing for external) provides a variant of SATA meant for external connectivity. It uses a more robust connector, longer shielded cables, and stricter (but backward-compatible) electrical standards. The protocol and logical signaling (link/transport layers and above) are identical to internal SATA. The differences are:

  • Minimum transmit amplitude increased: Range is 500–600 mV instead of 400–600 mV.
  • Minimum receive amplitude decreased: Range is 240–600 mV instead of 325–600 mV.
  • Maximum cable length increased to 2 metres (6.6 ft) from 1 metre (3.3 ft).
  • The eSATA cable and connector is similar to the SATA 1.0a cable and connector, with these exceptions:
    • The eSATA connector is mechanically different to prevent unshielded internal cables from being used externally. The eSATA connector discards the "L"-shaped key and changes the position and size of the guides.
    • The eSATA insertion depth is deeper: 6.6 mm instead of 5 mm. The contact positions are also changed.
    • The eSATA cable has an extra shield to reduce EMI to FCC and CE requirements. Internal cables do not need the extra shield to satisfy EMI requirements because they are inside a shielded case.
    • The eSATA connector uses metal springs for shield contact and mechanical retention.
    • The eSATA connector has a design-life of 5,000 matings; the ordinary SATA connector is only specified for 50.

Aimed at the consumer market, eSATA enters an external storage market served also by the USB and FireWire interfaces. The SATA interface has certain advantages. Most external hard-disk-drive cases with FireWire or USB interfaces use either PATA or SATA drives and "bridges" to translate between the drives' interfaces and the enclosures' external ports; this bridging incurs some inefficiency. Some single disks can transfer 157 MB/s during real use, about four times the maximum transfer rate of USB 2.0 or FireWire 400 (IEEE 1394a) and almost twice as fast as the maximum transfer rate of FireWire 800. The S3200 FireWire 1394b specification reaches around 400 MB/s (3.2 Gbit/s), and USB 3.0 has a nominal speed of 5 Gbit/s. Some low-level drive features, such as S.M.A.R.T., may not operate through some USB or FireWire or USB+FireWire bridges; eSATA does not suffer from these issues provided that the controller manufacturer (and its drivers) presents eSATA drives as ATA devices, rather than as SCSI devices, as has been common with Silicon Image, JMicron, and NVIDIA nForce drivers for Windows Vista. In those cases SATA drives do not have low-level features accessible.

The eSATA version of SATA 6G operates at 6.0 Gbit/s (the term "SATA III" is avoided by the SATA-IO organization to prevent confusion with SATA II 3.0 Gbit/s, which was colloquially referred to as "SATA 3G" [bit/s] or "SATA 300" [MB/s] since the 1.5 Gbit/s SATA I and 1.5 Gbit/s SATA II were referred to as both "SATA 1.5G" [bit/s] or "SATA 150" [MB/s]). Therefore, eSATA connections operate with negligible differences between them. Once an interface can transfer data as fast as a drive can handle them, increasing the interface speed does not improve data transfer.

There are some disadvantages, however, to the eSATA interface:

  • Devices built before the eSATA interface became popular lack external SATA connectors.
  • For small form-factor devices (such as external 2.5-inch (64 mm) disks), a PC-hosted USB or FireWire link can usually supply sufficient power to operate the device. However, eSATA connectors cannot supply power, and require a power supply for the external device. The related eSATAp (but mechanically incompatible, sometimes called eSATA/USB) connector adds power to an external SATA connection, so that an additional power supply is not needed.

As of mid 2017 few new computers have dedicated external SATA (eSATA) connectors, with USB3 dominating and USB3 Type C, often with the Thunderbolt alternate mode, starting to replace the earlier USB connectors. Still sometimes present are single ports supporting both USB3 and eSATA.

Desktop computers without a built-in eSATA interface can install an eSATA host bus adapter (HBA); if the motherboard supports SATA, an externally available eSATA connector can be added. Notebook computers with the now rare Cardbus or ExpressCard could add an eSATA HBA. With passive adapters, the maximum cable length is reduced to 1 metre (3.3 ft) due to the absence of compliant eSATA signal-levels.

eSATAp

Main article: eSATAp
eSATAp port

eSATAp stands for powered eSATA. It is also known as Power over eSATA, Power eSATA, eSATA/USB Combo, or eSATA USB Hybrid Port (EUHP). An eSATAp port combines the four pins of the USB 2.0 (or earlier) port, the seven pins of the eSATA port, and optionally two 12 V power pins. Both SATA traffic and device power are integrated in a single cable, as is the case with USB but not eSATA. The 5 V power is provided through two USB pins, while the 12 V power may optionally be provided. Typically desktop, but not notebook, computers provide 12 V power, so can power devices requiring this voltage, typically 3.5-inch disk and CD/DVD drives, in addition to 5 V devices such as 2.5-inch drives.

Both USB and eSATA devices can be used with an eSATAp port, when plugged in with a USB or eSATA cable, respectively. An eSATA device cannot be powered via an eSATAp cable, but a special cable can make both SATA or eSATA and power connectors available from an eSATAp port.

An eSATAp connector can be built into a computer with internal SATA and USB, by fitting a bracket with connections for internal SATA, USB, and power connectors and an externally accessible eSATAp port. Though eSATAp connectors have been built into several devices, manufacturers do not refer to an official standard.

Pre-standard implementations

  • Prior to the final eSATA 3 Gbit/s specification, a number of products were designed for external connection of SATA drives. Some of these use the internal SATA connector, or even connectors designed for other interface specifications, such as FireWire. These products are not eSATA compliant. The final eSATA specification features a specific connector designed for rough handling, similar to the regular SATA connector, but with reinforcements in both the male and female sides, inspired by the USB connector. eSATA resists inadvertent unplugging, and can withstand yanking or wiggling, which could break a male SATA connector (the hard-drive or host adapter, usually fitted inside the computer). With an eSATA connector, considerably more force is needed to damage the connector—and if it does break, it is likely to be the female side, on the cable itself,[citation needed] which is relatively easy to replace.
  • Prior to the final eSATA 6 Gbit/s specification many add-on cards and some motherboards advertised eSATA 6 Gbit/s support because they had 6 Gbit/s SATA 3.0 controllers for internal-only solutions. Those implementations are non-standard, and eSATA 6 Gbit/s requirements were ratified in the July 18, 2011 SATA 3.1 specification. Some products might not be fully eSATA 6 Gbit/s compliant.

Mini-SATA (mSATA)

An mSATA SSD.

Mini-SATA (abbreviated as mSATA), which is distinct from the micro connector, was announced by the Serial ATA International Organization on September 21, 2009. Applications include netbooks, laptops and other devices that require a solid-state drive in a small footprint.

The physical dimensions of the mSATA connector are identical to those of the PCI Express Mini Card interface, but the interfaces are electrically not compatible; the data signals (TX±/RX± SATA, PETn0 PETp0 PERn0 PERp0 PCI Express) need a connection to the SATA host controller instead of the PCI Express host controller.

The M.2 specification has superseded mSATA.

SFF-8784 connector

SFF-8784 connector
Bottom Top
Pin Function Pin Function Pin Function Pin Function
1 Ground 6 Unused 11 Ground 16 +5 V
2 Ground 7 +5 V 12 B+ (transmit) 17 Ground
3 Ground 8 Unused 13 B− (transmit) 18 A− (receive)
4 Ground 9 Unused 14 Ground 19 A+ (receive)
5 LED 10 Ground 15 +5 V 20 Ground

Slim 2.5-inch SATA devices, 5 mm (0.20 inches) in height, use the twenty-pin SFF-8784 edge connector to save space. By combining the data signals and power lines into a slim connector that effectively enables direct connection to the device's printed circuit board (PCB) without additional space-consuming connectors, SFF-8784 allows further internal layout compaction for portable devices such as ultrabooks.

Pins 1 to 10 are on the connector's bottom side, while pins 11 to 20 are on the top side.

SATA Express

Two SATA Express connectors (light gray) on a computer motherboard; to the right of them are common SATA connectors (dark gray)
Main article: SATA Express

SATA Express, initially standardized in the SATA 3.2 specification, is an interface that supports either SATA or PCI Express storage devices. The host connector is backward compatible with the standard 3.5-inch SATA data connector, allowing up to two legacy SATA devices to connect. At the same time, the host connector provides up to two PCI Express 3.0 lanes as a pure PCI Express connection to the storage device, allowing bandwidths of up to 2 GB/s.

Instead of the otherwise usual approach of doubling the native speed of the SATA interface, PCI Express was selected for achieving data transfer speeds greater than 6 Gbit/s. It was concluded that doubling the native SATA speed would take too much time, too many changes would be required to the SATA standard, and would result in a much greater power consumption when compared to the existing PCI Express bus.

In addition to supporting legacy Advanced Host Controller Interface (AHCI), SATA Express also makes it possible for NVM Express (NVMe) to be used as the logical device interface for connected PCI Express storage devices.

As M.2 form factor, described below, achieved much larger popularity, SATA Express is considered as a failed standard and dedicated ports quickly disappeared from motherboards.

M.2 (NGFF)

Size comparison of mSATA (left) and M.2 (size 2242, right) SSDs
Main article: M.2

M.2, formerly known as the Next Generation Form Factor (NGFF), is a specification for computer expansion cards and associated connectors. It replaces the mSATA standard, which uses the PCI Express Mini Card physical layout. Having a smaller and more flexible physical specification, together with more advanced features, the M.2 is more suitable for solid-state storage applications in general, especially when used in small devices such as ultrabooks or tablets.

The M.2 standard is designed as a revision and improvement to the mSATA standard, so that larger printed circuit boards (PCBs) can be manufactured. While mSATA took advantage of the existing PCI Express Mini Card form factor and connector, M.2 has been designed to maximize usage of the card space, while minimizing the footprint.

Supported host controller interfaces and internally provided ports are a superset to those defined by the SATA Express interface. Essentially, the M.2 standard is a small form factor implementation of the SATA Express interface, with the addition of an internal USB 3.0 port.

U.2 (SFF-8639)

U.2, formerly known as SFF-8639. Like M.2, it carries a PCI Express electrical signal, however U.2 uses a PCIe 3.0 ×4 link providing a higher bandwidth of 32 Gbit/s in each direction. In order to provide maximum backward compatibility the U.2 connector also supports SATA and multi-path SAS.

This section does not cite any sources. Please help improve this section by . Unsourced material may be challenged and removed.(January 2016) ()

The SATA specification defines three distinct protocol layers: physical, link, and transport.

Physical layer

The physical layer defines SATA's electrical and physical characteristics (such as cable dimensions and parasitics, driver voltage level and receiver operating range), as well as the physical coding subsystem (bit-level encoding, device detection on the wire, and link initialization).

Physical transmission uses differential signaling. The SATA PHY contains a transmit pair and receive pair. When the SATA-link is not in use (example: no device attached), the transmitter allows the transmit pins to float to their common-mode voltage level. When the SATA-link is either active or in the link-initialization phase, the transmitter drives the transmit pins at the specified differential voltage (1.5 V in SATA/I).

SATA physical coding uses a line encoding system known as 8b/10b encoding. This scheme serves multiple functions required to sustain a differential serial link. First, the stream contains necessary synchronization information that allows the SATA host/drive to extract clocking. The 8b/10b encoded sequence embeds periodic edge transitions to allow the receiver to achieve bit-alignment without the use of a separately transmitted reference clock waveform. The sequence also maintains a neutral (DC-balanced) bitstream, which lets transmit drivers and receiver inputs be AC-coupled. Generally, the actual SATA signalling is half-duplex, meaning that it can only read or write data at any one time.

Also, SATA uses some of the special characters defined in 8b/10b. In particular, the PHY layer uses the comma (K28.5) character to maintain symbol-alignment. A specific four-symbol sequence, the ALIGN primitive, is used for clock rate-matching between the two devices on the link. Other special symbols communicate flow control information produced and consumed in the higher layers (link and transport).

Separate point-to-point AC-coupled low-voltage differential signaling (LVDS) links are used for physical transmission between host and drive.

The PHY layer is responsible for detecting the other SATA/device on a cable, and link initialization. During the link-initialization process, the PHY is responsible for locally generating special out-of-band signals by switching the transmitter between electrical-idle and specific 10b-characters in a defined pattern, negotiating a mutually supported signalling rate (1.5, 3.0, or 6.0 Gbit/s), and finally synchronizing to the far-end device's PHY-layer data stream. During this time, no data is sent from the link-layer.

Once link-initialization has completed, the link-layer takes over data-transmission, with the PHY providing only the 8b/10b conversion before bit transmission.

Link layer

After the PHY-layer has established a link, the link layer is responsible for transmission and reception of Frame Information Structures (FISs) over the SATA link. FISs are packets containing control information or payload data. Each packet contains a header (identifying its type), and payload whose contents are dependent on the type. The link layer also manages flow control over the link.

Transport layer

Layer number three in the serial ATA specification is the transport layer. This layer has the responsibility of acting on the frames and transmitting/receiving the frames in an appropriate sequence. The transport layer handles the assembly and disassembly of FIS structures, which includes, for example, extracting content from register FISs into the task-file and informing the command layer. In an abstract fashion, the transport layer is responsible for creating and encoding FIS structures requested by the command layer, and removing those structures when the frames are received.

When DMA data is to be transmitted and is received from the higher command layer, the transport layer appends the FIS control header to the payload, and informs the link layer to prepare for transmission. The same procedure is performed when data is received, but in reverse order. The link layer signals to the transport layer that there is incoming data available. Once the data is processed by the link layer, the transport layer inspects the FIS header and removes it before forwarding the data to the command layer.

See also: Port multiplier
SATA topology: host (H), multiplier (M), and device (D)

SATA uses a point-to-point architecture. The physical connection between a controller and a storage device is not shared among other controllers and storage devices. SATA defines multipliers, which allows a single SATA controller port to drive up to fifteen storage devices. The multiplier performs the function of a hub; the controller and each storage device is connected to the hub. This is conceptually similar to SAS expanders.

Modern[update] PC systems have SATA controllers built into the motherboard, typically featuring two to eight ports. Additional ports can be installed through add-in SATA host adapters (available in variety of bus-interfaces: USB, PCI, PCIe).

SATA and PATA

PATA hard disk with SATA converter attached.

At the hardware interface level, SATA and PATA (Parallel AT Attachment) devices are completely incompatible: they cannot be interconnected without an adapter.

At the application level, SATA devices can be specified to look and act like PATA devices.

Many motherboards offer a "Legacy Mode" option, which makes SATA drives appear to the OS like PATA drives on a standard controller. This Legacy Mode eases OS installation by not requiring that a specific driver be loaded during setup, but sacrifices support for some (vendor specific) features of SATA. Legacy Mode often if not always disables some of the boards' PATA or SATA ports, since the standard PATA controller interface supports only four drives. (Often, which ports are disabled is configurable.)

The common heritage of the ATA command set has enabled the proliferation of low-cost PATA to SATA bridge chips. Bridge chips were widely used on PATA drives (before the completion of native SATA drives) as well in standalone converters. When attached to a PATA drive, a device-side converter allows the PATA drive to function as a SATA drive. Host-side converters allow a motherboard PATA port to connect to a SATA drive.

The market has produced powered enclosures for both PATA and SATA drives that interface to the PC through USB, Firewire or eSATA, with the restrictions noted above. PCI cards with a SATA connector exist that allow SATA drives to connect to legacy systems without SATA connectors.

SATA 1.5 Gbit/s and SATA 3 Gbit/s

The designers of SATA standard as an overall goal aimed for backward and forward compatibility with future revisions of the SATA standard. To prevent interoperability problems that could occur when next generation SATA drives are installed on motherboards with standard legacy SATA 1.5 Gbit/s host controllers, many manufacturers have made it easy to switch those newer drives to the previous standard's mode. Examples of such provisions include:

  • Seagate/Maxtor has added a user-accessible jumper-switch, known as the "force 150", to enable the drive switch between forced 1.5 Gbit/s and 1.5/3 Gbit/s negotiated operation.
  • Western Digital uses a jumper setting called OPT1 enabled to force 1.5 Gbit/s data transfer speed (OPT1 is enabled by putting the jumper on pins 5 and 6).
  • Samsung drives can be forced to 1.5 Gbit/s mode using software that may be downloaded from the manufacturer's website. Configuring some Samsung drives in this manner requires the temporary use of a SATA-2 (SATA 3.0 Gbit/s) controller while programming the drive.

The "force 150" switch (or equivalent) is also useful for attaching SATA 3 Gbit/s hard drives to SATA controllers on PCI cards, since many of these controllers (such as the Silicon Image chips) run at 3 Gbit/s, even though the PCI bus cannot reach 1.5 Gbit/s speeds. This can cause data corruption in operating systems that do not specifically test for this condition and limit the disk transfer speed.[citation needed]

SATA 3 Gbit/s and SATA 6 Gbit/s

This section needs expansion. You can help by adding to it.(October 2011)

SATA 3 Gbit/s and SATA 6 Gbit/s are compatible with each other. Most devices that are only SATA 3 Gbit/s can connect with devices that are SATA 6 Gbit/s, and vice versa, though SATA 3 Gbit/s devices only connect with SATA 6 Gbit/s devices at the slower 3 Gbit/s speed.

SATA 1.5 Gbit/s and SATA 6 Gbit/s

This section needs expansion. You can help by adding to it.(July 2013)

SATA 1.5 Gbit/s and SATA 6 Gbit/s are compatible with each other. Most devices that are only SATA 1.5 Gbit/s can connect with devices that are SATA 6 Gbit/s, and vice versa, though SATA 1.5 Gbit/s devices only connect with SATA 6 Gbit/s devices at the slower 1.5 Gbit/s speed.

SATA and SCSI

Parallel SCSI uses a more complex bus than SATA, usually resulting in higher manufacturing costs. SCSI buses also allow connection of several drives on one shared channel, whereas SATA allows one drive per channel, unless using a port multiplier. Serial Attached SCSI uses the same physical interconnects as SATA, and most SAS HBAs also support 3 and 6 Gbit/s SATA devices (an HBA requires support for Serial ATA Tunneling Protocol).

SATA 3 Gbit/s theoretically offers a maximum bandwidth of 300 MB/s per device, which is only slightly lower than the rated speed for SCSI Ultra 320 with a maximum of 320 MB/s total for all devices on a bus. SCSI drives provide greater sustained throughput than multiple SATA drives connected via a simple (i.e., command-based) port multiplier because of disconnect-reconnect and aggregating performance. In general, SATA devices link compatibly to SAS enclosures and adapters, whereas SCSI devices cannot be directly connected to a SATA bus.

SCSI, SAS, and fibre-channel (FC) drives are more expensive than SATA, so they are used in servers and disk arrays where the better performance justifies the additional cost. Inexpensive ATA and SATA drives evolved in the home-computer market, hence there is a view that they are less reliable. As those two worlds overlapped, the subject of reliability became somewhat controversial. Note that, in general, the failure rate of a disk drive is related to the quality of its heads, platters and supporting manufacturing processes, not to its interface.

Use of serial ATA in the business market increased from 22% in 2006 to 28% in 2008.

Comparison with other buses

SCSI-3 devices with SCA-2 connectors are designed for hot swapping. Many server and RAID systems provide hardware support for transparent hot swapping. The designers of the SCSI standard prior to SCA-2 connectors did not target hot swapping, but in practice, most RAID implementations support hot swapping of hard disks.

Name Raw data rate Data rate Max. cable length Power provided Devices per channel
eSATA 6 Gbit/s 600 MB/s
  • 2 m
  • 1 m with passive SATA adapter
No 1 (15 with a port multiplier)
eSATAp 6 Gbit/s 600 MB/s 5 V, and, optionally, 12 V
SATA Express 16 Gbit/s 1.97 GB/s 1 m No
SATA revision 3.0 6 Gbit/s 600 MB/s
SATA revision 2.0 3 Gbit/s 300 MB/s
SATA revision 1.0 1.5 Gbit/s 150 MB/s 1
PATA (IDE) 133 1.064 Gbit/s 133.3 MB/s 0.46 m (18 in) 5 V (only 2.5-inch drive 44-pin connector) 2
SAS-4 22.5 Gbit/s 2.25 GB/s 10 m Backplane connectors only 1 (> 65k with expanders)
SAS-3 12 Gbit/s 1.2 GB/s
SAS-2 6 Gbit/s 600 MB/s
SAS-1 3 Gbit/s 300 MB/s
IEEE 1394 (FireWire) 3200 3.144 Gbit/s 393 MB/s 100 m (more with special cables) 15 W, 12–25 V 63 (with a hub)
IEEE 1394 (FireWire) 800 786 Mbit/s 98.25 MB/s 100 m
IEEE 1394 (FireWire) 400 393 Mbit/s 49.13 MB/s 4.5 m
USB 3.2 (Generation 2x2) 20 Gbit/s 2.44 GB/s 1 m (Passive cable USB-IF Standard) Yes 100 W, 5, 12 or 20 V}} 127 (with a hub)
USB 3.1 (Generation 2) 10 Gbit/s 1.22 GB/s 1 m (Passive cable USB-IF Standard) 100 W, 5, 12 or 20 V 127 (with a hub)
USB 3.0 (USB 3.2, Generation 1) 5 Gbit/s 610 MB/s or more (excl. protocol
overhead, flow control, and framing)
2 m (Passive cable USB-IF Standard) 4.5 W, 5 V
USB 2.0 480 Mbit/s 58 MB/s 5 m 2.5 W, 5 V
USB 1.1 12 Mbit/s 1.5 MB/s 3 m Yes
SCSI Ultra-320 2.56 Gbit/s 320 MB/s 12 m Only with SCA Backplane 15 excl. host bus adapter/host
10GFC Fibre Channel 10.52 Gbit/s 1.195 GB/s 2 m – 50 km No 126 (16,777,216 with switches)
4GFC Fibre Channel 4.25 Gbit/s 398 MB/s 12 m
InfiniBand
Quad Rate
10 Gbit/s 0.98 GB/s
  • 5 m (copper)
  • <10 km (fiber)
1 with point-to-point, many with switched fabric
Thunderbolt 10 Gbit/s 1.22 GB/s
  • 3 m (copper)
  • 100 m (fiber)
10 W (only copper) 7
Thunderbolt 2 20 Gbit/s 2.44 GB/s
Thunderbolt 3 40 Gbit/s 4.88 GB/s 100 W (only copper)
  1. Integrated Drive Electronics
  2. Disk-based memory (hard drives), solid state disk devices such as USB drives, DVD-based storage, bit rates, bus speeds, and network speeds, are specified using decimal meanings for K (10001), M (10002), G (10003), etc.
  3. Drive present
  4. 16 Gbit/s raw bit rate, with 128b/130b encoding
  5. 15 ns cycles, 16-bit transfers
  6. 20 Gbit/s raw bit rate, with 128b/132b encoding
  7. 10 Gbit/s raw bit rate, with 128b/132b encoding
  8. USB 3.0 specification was released to hardware vendors on 17 November 2008.
  1. "Differences between SAS and SATA".
  2. "Software status - ata Wiki". ata.wiki.kernel.org. 2008-08-17. Archived from the original on 2009-01-24. Retrieved2010-01-26.
  3. "Serial ATA: High Speed Serialized AT Attachment"(PDF). ece.umd.edu. Serial ATA Working Group. January 7, 2003. Archived from the original(PDF) on October 9, 2016. Retrieved2016-02-21.
  4. "Technical Committee T13, AT Attachment". Technical Committee T13 AT Attachment. March 1, 2011. RetrievedJuly 8, 2019.
  5. "Seagate, APT and Vitesse Unveil the First Serial ATA Disc Drive at Intel Developer Forum", Seagate Technology, Aug. 22, 2000
  6. Andrawes, Mike. "Intel IDF Report #2 - Serial ATA & USB 2.0". AnadTech. Future plc. Retrieved30 August 2020.
  7. "Lamars, Lawrence J., Information technology - AT Attachment Interface for Disk Drives, Computer and Business Equipment Manufacturers Association, 1994, xi (introduction)"(PDF). Archived(PDF) from the original on 2016-06-17. Retrieved2016-08-02.
  8. Govindarajalu, B., IBM PC And Clones: Hardware, Troubleshooting And Maintenance. Amazon.com. Tata McGraw-Hill Publishing Company. 2002. p. xxxi. ISBN 9780070483118. Retrieved2016-08-02.
  9. https://www.seagate.com/support/disc/manuals/sata/cuda5_sata_pm.pdf
  10. "Serial ATA: Meeting Storage Needs Today and Tomorrow"(PDF). Archived from the original(PDF) on 2012-04-17. Retrieved2011-10-30.
  11. Donald Melanson (2008-02-25). "CFast CompactFlash cards now said to be coming in "18 to 24 months"". Engadget. Archived from the original on 2009-03-03. Retrieved2009-03-19.
  12. "Pretec release CFast card with SATA interface". DPReview. 8 January 2009. Archived from the original on 25 October 2012. Retrieved19 March 2009.
  13. "Specification for some motherboard with eSATA connector".
  14. "Serial ATA (SATA) Linux hardware/driver status report". linux-ata.org. Archived from the original on 2007-03-12. Retrieved2010-01-26.
  15. "Intel® Matrix Storage Technology - Unattended Installation Instructions Under Windows* XP". Intel. 2 March 2007. Archived from the original on 2 March 2007.CS1 maint: bot: original URL status unknown (link)
  16. http://kb.sandisk.com/app/answers/detail/a_id/8142/~/difference-between-sata-i,-sata-ii-and-sata-iii www.sandisk.com. Sandisk. Retrieved April 2016.
  17. Geoff Gasior (2004-03-08). "Western Digital's Raptor WD740GD SATA hard drive: Single-user performance, multi-user potential". techreport.com. Archived from the original on 2015-03-25. Retrieved2015-06-16.
  18. Patrick Schmid and Achim Roos (2010-04-06). "VelociRaptor Returns: 6Gbit/s, 600GB, And 10,000 RPM". tomshardware.com. Retrieved2010-06-26.
  19. "SATA-IO Specifications and Naming Conventions". sata-io.org. Archived from the original on 2012-08-29. Retrieved2012-08-30.
  20. "Archived copy"(PDF). Archived(PDF) from the original on 2015-03-16. Retrieved2017-11-10.CS1 maint: archived copy as title (link)
  21. "SATA-IO Completes SATA Revision 2.5 Integrated Spec; Slimline Connector Spec and Interoperability Program Plans Also Released". www.businesswire.com. Archived from the original on 2017-11-10.
  22. "Serial ATA Revision 2.6"(PDF). Serial ATA International Organization. p. 115. Archived(PDF) from the original on 2014-10-06.
  23. "New SATA Spec Will Double Data Transfer Rates to 6 Gbit/s"(PDF) (Press release). SATA-IO. 2008-08-18. Archived from the original(PDF) on 2010-09-23. Retrieved2009-07-13.
  24. "SATA Revision 3.0". SATA-IO. 27 May 2009. Archived from the original on 2 February 2013. Retrieved4 December 2009.
  25. "SATA-IO Releases SATA Revision 3.0 Specification"(PDF) (Press release). Serial ATA International Organization. May 27, 2009. Archived(PDF) from the original on 11 June 2009. Retrieved3 July 2009.
  26. Rick Merritt (2008-08-18). "Serial ATA doubles data rate to 6 Gbit/s (EETimes news report)". eetimes.com. Archived from the original on 2012-10-27. Retrieved2010-01-26.
  27. "SATA-IO Releases Revision 3.1 Specification"(PDF). SATA-IO. 2011-07-18. Archived(PDF) from the original on 2014-02-22. Retrieved2013-07-22.
  28. Hilbert Hagedoorn (2011-07-20). "SATA 3.1 specifications have been published". guru3d.com. Archived from the original on 2013-05-17. Retrieved2012-09-26.
  29. "Msata Faq". forum.notebookreview.com. Archived from the original on 2012-02-10. Retrieved2011-10-30.
  30. "Serial ATA International Organization: SATA Universal Storage Module (USM)". sata-io.org. Archived from the original on 2011-11-01. Retrieved2011-10-30.
  31. Perenson, Melissa J. "New Universal Storage Module Promises to Evolve Portable Data". PCWorld. Archived from the original on 2014-02-21. Retrieved2014-02-12.
  32. "SATA-IO Unveils Revision 3.2 Specification"(PDF). SATA-IO. 2013-08-08. Archived(PDF) from the original on 2016-03-04. Retrieved2015-09-11.
  33. Enabling Higher Speed Storage Applications with SATA Express Archived 2012-11-27 at the Wayback Machine, Serial ATA International Organization.
  34. SATA-IO announces 16Gb/s SATA 3.2 specification Archived 2014-03-30 at the Wayback Machine.
  35. "SATA M.2 Card". SATA-IO. Archived from the original on 2013-10-03. Retrieved2014-01-16.
  36. SATA µSSD Archived 2013-05-08 at the Wayback Machine, Serial ATA International Organization.
  37. "SATA-IO Rolls Out USM Slim Specification for Thinner, Lighter External Storage"(PDF). SATA-IO. Archived(PDF) from the original on 2014-02-22. Retrieved2014-02-12.
  38. "SATA Enables Life Unplugged". SATA-IO. Archived from the original on 2014-02-07. Retrieved2014-01-16.
  39. "SATA-IO FAQ"(PDF). What else is new in SATA specification v3.2?. SATA-IO. p. 2. Archived(PDF) from the original on 2013-10-04. Retrieved2013-10-03.
  40. First specifications leaked from SATA-IO Archived 2013-08-12 at the Wayback Machine, Serial ATA International Organization, GuruHT.com
  41. "SATA-IO Expands Supported Features in Revision 3.3 Specification"(PDF). SATA-IO. 2016-02-16. Archived(PDF) from the original on 2017-07-03. Retrieved2016-12-26.
  42. "SATA-IO Frequently Asked Questions"(PDF). SATA-IO. 2016-11-11. Archived(PDF) from the original on 2016-12-26. Retrieved2016-12-26.
  43. "Power Disable Feature Tech Brief"(PDF). HGST. 2016-08-04. Archived(PDF) from the original on 2016-11-21. Retrieved2016-12-26.
  44. "SATA-IO Expands Supported Features in Revision 3.4 Specification"(PDF). SATA-IO. 2018-06-25. Archived(PDF) from the original on 2019-06-15. Retrieved2019-06-15.
  45. "SATA-IO Increases Interoperability Features with Revision 3.5 Specification"(PDF). SATA-IO. 2020-07-15. Archived(PDF) from the original on 2020-07-19. Retrieved2020-11-28.
  46. "Can I install a laptop 2.5" SATA drive on a desktop without any adapters?". superuser.com. 2009. Archived from the original on 2013-12-02. Retrieved2013-12-04.
  47. "Get ready for mini-SATA". The Tech Report. 2009-09-21. Archived from the original on 2009-09-25. Retrieved2010-01-26.
  48. "Serial ATA (SATA) pinout diagram". pinoutsguide.com. 2013-12-16. Archived from the original on 2014-02-20. Retrieved2014-04-02.
  49. Serial ATA Revision 3.0 6.1.8 Internal single lane cable
  50. "Serial ATA (SATA, Serial Advanced Technology Attachment)". allpinouts.org. Archived from the original on 2008-11-08. Retrieved2016-07-05.
  51. Example of active power adapter Archived 2017-07-12 at the Wayback Machine.
  52. "Serial ATA (SATA) power connector pinout and connections @". pinouts.ru. 2013-05-31. Archived from the original on 2013-06-28. Retrieved2013-06-14.
  53. "Archived copy"(PDF). Archived(PDF) from the original on 2017-08-29. Retrieved2017-11-10.CS1 maint: archived copy as title (link)
  54. "Understand the difference: micro-SATA vs. mSATA". amazon.com. 2013-02-23. Archived from the original on 2013-08-02. Retrieved2013-11-06.
  55. "USB – smartmontools". sourceforge.net. Archived from the original on 2012-02-07. Retrieved2012-01-13.
  56. "Questions about the indicators of health/performance (in percent)". hddlife.com. Archived from the original on 2007-09-24. Retrieved2007-08-29.
  57. "External Serial ATA"(PDF). Silicon Image, Inc. Archived from the original(PDF) on 13 June 2010. Retrieved8 August 2009.
  58. "CardBus SATA adapter". addonics.com. Archived from the original on 2011-11-04. Retrieved2010-01-26.
  59. "ExpressCard SATA adapter". addonics.com. Archived from the original on 2011-11-29. Retrieved2010-01-26.
  60. "Addonics Technology: Hybrid eSATA (eSATA USB hybrid) interface". addonics.com. Archived from the original on 2011-10-30. Retrieved2011-10-30.
  61. "Frequently Asked Questions About SATA 6 Gbit/s and the SATA Revision 3.0 Specification"(PDF). May–June 2009. Archived(PDF) from the original on 2014-02-22. Retrieved2011-10-30.
  62. "mSATA Press Release"(PDF). Archived from the original(PDF) on 26 July 2011. Retrieved11 March 2011.
  63. "Intel 310 SSD"(PDF). Intel. Archived from the original(PDF) on 12 January 2011. Retrieved11 March 2011.
  64. Jim Handy; Jon Tanguy; Jaren May; David Akerson; Eden Kim; Tom Coughlin (September 20, 2014). "SNIA Webcast: All About M.2 SSDs"(PDF). SNIA. RetrievedJuly 15, 2015.
  65. "SFF-8784 Edge Connector Pin Definitions: Information Sheet"(PDF). Western Digital. 2013. Archived(PDF) from the original on February 26, 2015. RetrievedFebruary 26, 2015.
  66. "SATA Revision 3.2". SATA-IO. Archived from the original on 2013-08-09. Retrieved2013-10-02.
  67. "Connector Mating Matrix"(PDF). SATA-IO. Archived(PDF) from the original on 2013-10-04. Retrieved2013-10-02.
  68. "Enabling Higher Speed Storage Applications with SATA Express". SATA-IO. 2013. Archived from the original on 2014-02-07. Retrieved2013-10-02.
  69. Paul Wassenberg (2013-06-25). "SATA Express: PCIe Client Storage"(PDF). SATA-IO. Archived(PDF) from the original on 2013-10-04. Retrieved2013-10-02.
  70. Dave Landsman. "AHCI and NVMe as Interfaces for SATA Express Devices – Overview"(PDF). SanDisk. Archived(PDF) from the original on 2013-10-05. Retrieved2013-10-02.
  71. "SATA M.2 Card". SATA-IO. Archived from the original on 2013-10-03. Retrieved2013-09-14.
  72. "Intel SSD 530 Series Arriving Next Week – Feature NGFF M.2 Interface". WCCF Tech. 2 July 2013. Archived from the original on 2013-09-05. Retrieved2013-09-14.
  73. "M.2 (NGFF) Quick Reference Guide"(PDF). Tyco Electronics. Archived from the original on 2013-08-10. Retrieved2013-11-16.
  74. "U.2 connector SATA, SAS, PCI-e signals assignments". pinoutguide.com.
  75. "Port Multipliers". SATA-IO. Archived from the original on 2014-08-25. Retrieved2014-02-17.
  76. "A comparison with Ultra ATA Technology"(PDF). SATA-IO. Archived from the original(PDF) on 2012-03-27. Retrieved2014-08-15.
  77. Ultra-640 is specified, but devices do not exist
  78. FIS-based switching is comparable to SCSI's tagged command queueing
  79. "Serial ATA: Meeting Storage Needs Today and Tomorrow"(PDF). SATA-IO. Archived from the original(PDF) on 17 April 2012. Retrieved26 March 2016.
  80. "eSATAp Application". delock.de. Archived from the original on 2012-02-10. Retrieved2010-01-26.
  81. "Fast Just Got Faster: SATA 6Gbit/s"(PDF). sata-io.org. May 27, 2009. Archived from the original(PDF) on November 26, 2012. Retrieved2011-10-25.
  82. "Designing Serial ATA For Today's Applications and Tomorrow's Storage Needs"(PDF). sata-io.org. Archived from the original on 2011-11-01. Retrieved2011-10-25.CS1 maint: bot: original URL status unknown (link)
  83. "FireWire Developer Note: FireWire Concepts". Apple Developer Connection. Retrieved2009-07-13.
  84. 16 cables can be daisy chained up to 72 m
  85. Howse, Brett (September 17, 2014). "USB Power Delivery v2.0 Specification Finalized - USB Gains Alternate Modes". AnandTech. Archived from the original on January 24, 2015. Retrieved2015-01-15.
  86. Frenzel, Louis E. (September 25, 2008). "USB 3.0 Protocol Analyzer Jumpstarts 4.8-Gbit/s I/O Projects". Electronic Design. Archived from the original on May 3, 2012. Retrieved2009-07-03.
  87. Universal Serial Bus Specification Revision 3.0. 20 December 2012. p. 75 (4–4.11). Archived from the original on 2011-05-14. Retrieved14 April 2011.
  88. USB hubs can be daisy chained up to 25 m
  89. Minich, Makia (25 June 2007). "Infiniband Based Cable Comparison"(PDF). Archived from the original(PDF) on 10 February 2012. Retrieved11 February 2008.
  90. Feldman, Michael (17 July 2007). "Optical Cables Light Up InfiniBand". HPCwire. Tabor Publications & Events. p. 1. Archived from the original on 29 March 2012. Retrieved2008-02-11.
Wikimedia Commons has media related to:
Serial ATA (category)

Serial ATA
Serial ATA Article Talk Language Watch Edit 160 160 Redirected from SATA SATA redirects here For other uses see SATA disambiguation This article s use of external links may not follow Wikipedia s policies or guidelines Please improve this article by removing excessive or inappropriate external links and converting useful links where appropriate into footnote references February 2014 Learn how and when to remove this template message Serial ATA SATA abbreviated from Serial AT Attachment 3 is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives optical drives and solid state drives Serial ATA succeeded the earlier Parallel ATA PATA standard to become the predominant interface for storage devices Serial ATA SATA Year created2000Created bySerial ATA Working GroupSupersedesParallel ATA PATA SpeedHalf duplex 1 5 3 0 and 6 0 Gbit s 1 StyleSerialHotplugging interfaceOptional 2 External interfaceOptional eSATA Websitesata io wbr org Serial ATA industry compatibility specifications originate from the Serial ATA International Organization SATA IO which are then promulgated by the INCITS Technical Committee T13 AT Attachment INCITS T13 4 Contents 1 History 2 Features 2 1 Hot plug 2 2 Advanced Host Controller Interface 3 Revisions 3 1 SATA revision 1 0 1 5 Gbit s 150 MB s Serial ATA 150 3 2 SATA revision 2 0 3 Gbit s 300 MB s Serial ATA 300 3 2 1 SATA revision 2 5 3 2 2 SATA revision 2 6 3 3 SATA revision 3 0 6 Gbit s 600 MB s Serial ATA 600 3 3 1 SATA revision 3 1 3 3 2 SATA revision 3 2 3 3 3 SATA revision 3 3 3 3 4 SATA revision 3 4 3 3 5 SATA revision 3 5 4 Cables connectors and ports 4 1 Data connector 4 2 Power connectors 4 2 1 Standard connector 4 2 2 Slimline connector 4 2 3 Micro connector 4 3 eSATA 4 3 1 eSATAp 4 3 2 Pre standard implementations 4 4 Mini SATA mSATA 4 5 SFF 8784 connector 4 6 SATA Express 4 7 M 2 NGFF 4 8 U 2 SFF 8639 5 Protocol 5 1 Physical layer 5 2 Link layer 5 3 Transport layer 6 Topology 7 Backward and forward compatibility 7 1 SATA and PATA 7 2 SATA 1 5 Gbit s and SATA 3 Gbit s 7 3 SATA 3 Gbit s and SATA 6 Gbit s 7 4 SATA 1 5 Gbit s and SATA 6 Gbit s 8 Comparison to other interfaces 8 1 SATA and SCSI 8 2 Comparison with other buses 9 See also 10 Notes 11 References 12 External linksHistory EditSATA was announced in 2000 5 6 in order to provide several advantages over the earlier PATA interface such as reduced cable size and cost seven conductors instead of 40 or 80 native hot swapping faster data transfer through higher signaling rates and more efficient transfer through an optional I O queuing protocol Revision 1 0 of the specification was released in January 2003 3 Serial ATA industry compatibility specifications originate from the Serial ATA International Organization SATA IO The SATA IO group collaboratively creates reviews ratifies and publishes the interoperability specifications the test cases and plugfests As with many other industry compatibility standards the SATA content ownership is transferred to other industry bodies primarily INCITS T13 4 and an INCITS T10 subcommittee SCSI a subgroup of T10 responsible for Serial Attached SCSI SAS The remainder of this article strives to use the SATA IO terminology and specifications Before SATA s introduction in 2000 PATA was simply known as ATA The AT Attachment ATA name originated after the 1984 release of the IBM Personal Computer AT more commonly known as the IBM AT 7 The IBM AT s controller interface became a de facto industry interface for the inclusion of hard disks AT was IBM s abbreviation for Advanced Technology thus many companies and organizations indicate SATA is an abbreviation of Serial Advanced Technology Attachment However the ATA specifications simply use the name AT Attachment to avoid possible trademark issues with IBM 8 SATA host adapters and devices communicate via a high speed serial cable over two pairs of conductors In contrast parallel ATA the redesignation for the legacy ATA specifications uses a 16 bit wide data bus with many additional support and control signals all operating at a much lower frequency To ensure backward compatibility with legacy ATA software and applications SATA uses the same basic ATA and ATAPI command sets as legacy ATA devices The world s first SATA hard disk drive is the Seagate Barracuda SATA V which was released in Jan 2003 9 SATA has replaced parallel ATA in consumer desktop and laptop computers SATA s market share in the desktop PC market was 99 in 2008 10 PATA has mostly been replaced by SATA for any use with PATA in declining use in industrial and embedded applications that use CompactFlash CF storage which was designed around the legacy PATA standard A 2008 standard CFast to replace CompactFlash is based on SATA 11 12 Features Edit SATA 6 Gbit s host controller a PCI Express 1 card with Marvell chipset Hot plug Edit The Serial ATA spec requires SATA device hot plugging that is devices that meet the specification are capable of insertion or removal of a device into or from a backplane connector combined signal and power that has power on After insertion the device initializes and then operates normally Depending upon the operating system the host may also initialize resulting in a hot swap The powered host and device do not need to be in an idle state for safe insertion and removal although unwritten data may be lost when power is removed Unlike PATA both SATA and eSATA support hot plugging by design However this feature requires proper support at the host device drive and operating system levels In general SATA devices fulfill the device side hot plugging requirements and most SATA host adapters support this function 2 For eSATA hot plugging is supported in AHCI mode only IDE mode does not support hot plugging 13 Advanced Host Controller Interface Edit Advanced Host Controller Interface AHCI is an open host controller interface published and used by Intel which has become a de facto standard It allows the use of advanced features of SATA such as hotplug and native command queuing NCQ If AHCI is not enabled by the motherboard and chipset SATA controllers typically operate in IDE a emulation mode which does not allow access to device features not supported by the ATA also called IDE standard Windows device drivers that are labeled as SATA are often running in IDE emulation mode unless they explicitly state that they are AHCI mode in RAID mode or a mode provided by a proprietary driver and command set that allowed access to SATA s advanced features before AHCI became popular Modern versions of Microsoft Windows Mac OS X FreeBSD Linux with version 2 6 19 onward 14 as well as Solaris and OpenSolaris include support for AHCI but earlier operating systems such as Windows XP do not Even in those instances a proprietary driver may have been created for a specific chipset such as Intel s 15 Revisions EditSATA revisions are typically designated with a dash followed by Roman numerals e g SATA III 16 to avoid confusion with the speed which is always displayed in Arabic numerals e g SATA 6 Gbit s The speeds given are the raw interface rate in Gbit s including line code overhead and the usable data rate in MB s without overhead SATA revision 1 0 1 5 Gbit s 150 MB s Serial ATA 150 Edit Revision 1 0a 3 was released on January 7 2003 First generation SATA interfaces now known as SATA 1 5 Gbit s communicate at a rate of 1 5 Gbit s b and do not support Native Command Queuing NCQ Taking 8b 10b encoding overhead into account they have an actual uncoded transfer rate of 1 2 Gbit s 150 MB s The theoretical burst throughput of SATA 1 5 Gbit s is similar to that of PATA 133 but newer SATA devices offer enhancements such as NCQ which improve performance in a multitasking environment During the initial period after SATA 1 5 Gbit s finalization adapter and drive manufacturers used a bridge chip to convert existing PATA designs for use with the SATA interface Bridged drives have a SATA connector may include either or both kinds of power connectors and in general perform identically to their native SATA equivalents 17 However most bridged drives lack support for some SATA specific features such as NCQ Native SATA products quickly took over the bridged products with the introduction of the second generation of SATA drives citation needed As of April 2010 update the fastest 10 000 rpm SATA hard disk drives could transfer data at maximum not average rates of up to 157 MB s 18 which is beyond the capabilities of the older PATA 133 specification and also exceeds the capabilities of SATA 1 5 Gbit s SATA revision 2 0 3 Gbit s 300 MB s Serial ATA 300 Edit SATA 2 connectors on a computer motherboard all but two with cables plugged in Note that there is no visible difference other than the labeling between SATA 1 SATA 2 and SATA 3 cables and connectors SATA revision 2 0 was released in April 2004 introducing Native Command Queuing NCQ It is backward compatible with SATA 1 5 Gbit s 19 Second generation SATA interfaces run with a native transfer rate of 3 0 Gbit s that when accounted for the 8b 10b encoding scheme equals to the maximum uncoded transfer rate of 2 4 Gbit s 300 MB s The theoretical burst throughput of the SATA revision 2 0 which is also known as the SATA 3 Gbit s doubles the throughput of SATA revision 1 0 All SATA data cables meeting the SATA spec are rated for 3 0 Gbit s and handle modern mechanical drives without any loss of sustained and burst data transfer performance However high performance flash based drives can exceed the SATA 3 Gbit s transfer rate this is addressed with the SATA 6 Gbit s interoperability standard SATA revision 2 5 Edit Announced in August 2005 SATA revision 2 5 consolidated the specification to a single document 20 21 SATA revision 2 6 Edit Announced in February 2007 SATA revision 2 6 introduced the following features 22 Slimline connector Micro connector initially for 1 8 HDD Mini Internal Multilane cable and connector Mini External Multilane cable and connector NCQ Priority NCQ Unload Enhancements to the BIST Activate FIS Enhancements for robust reception of the Signature FIS SATA revision 3 0 6 Gbit s 600 MB s Serial ATA 600 Edit Serial ATA International Organization SATA IO presented the draft specification of SATA 6 Gbit s physical layer in July 2008 23 and ratified its physical layer specification on August 18 2008 24 The full 3 0 standard was released on May 27 2009 25 Third generation SATA interfaces run with a native transfer rate of 6 0 Gbit s taking 8b 10b encoding into account the maximum uncoded transfer rate is 4 8 Gbit s 600 MB s The theoretical burst throughput of SATA 6 0 Gbit s is double that of SATA revision 2 0 It is backward compatible with SATA 3 Gbit s and SATA 1 5 Gbit s 23 The SATA 3 0 specification contains the following changes 6 Gbit s for scalable performance Continued compatibility with SAS including SAS 6 Gbit s as per a SAS domain may support attachment to and control of unmodified SATA devices connected directly into the SAS domain using the Serial ATA Tunneled Protocol STP from the SATA Revision 3 0 Gold specification Isochronous Native Command Queuing NCQ streaming command to enable isochronous quality of service data transfers for streaming digital content applications An NCQ management feature that helps optimize performance by enabling host processing and management of outstanding NCQ commands Improved power management capabilities A small low insertion force LIF connector for more compact 1 8 inch storage devices A 7 mm optical disk drive profile for the slimline SATA connector in addition to the existing 12 7 mm and 9 5 mm profiles Alignment with the INCITS ATA8 ACS standard In general the enhancements are aimed at improving quality of service for video streaming and high priority interrupts In addition the standard continues to support distances up to one meter The newer speeds may require higher power consumption for supporting chips though improved process technologies and power management techniques may mitigate this The later specification can use existing SATA cables and connectors though it was reported in 2008 that some OEMs were expected to upgrade host connectors for the higher speeds 26 SATA revision 3 1 Edit Released in July 2011 SATA revision 3 1 introduced or changed the following features 27 28 mSATA SATA for solid state drives in mobile computing devices a PCI Express Mini Card like connector that is electrically SATA 29 Zero power optical disk drive idle SATA optical drive draws no power Queued TRIM Command improves solid state drive performance Required Link Power Management reduces overall system power demand of several SATA devices Hardware Control Features enable host identification of device capabilities Universal Storage Module USM a new standard for cableless plug in slot powered storage for consumer electronics devices 30 31 SATA revision 3 2 Edit Released in August 2013 SATA revision 3 2 introduced the following features 32 The SATA Express specification defines an interface that combines both SATA and PCI Express buses making it possible for both types of storage devices to coexist By employing PCI Express a much higher theoretical throughput of 1969 MB s is possible 33 34 The SATA M 2 standard is a small form factor implementation of the SATA Express interface with the addition of an internal USB 3 0 port see the M 2 NGFF section below for a more detailed summary 35 microSSD introduces a ball grid array electrical interface for miniaturized embedded SATA storage 36 USM Slim reduces thickness of Universal Storage Module USM from 14 5 millimetres 0 57 inches to 9 millimetres 0 35 inches 37 DevSleep enables lower power consumption for always on devices while they are in low power modes such as InstantGo which used to be known as Connected Standby 38 Hybrid Information provides higher performance for solid state hybrid drives 39 40 SATA revision 3 3 Edit Released in February 2016 SATA revision 3 3 introduced the following features 41 42 Shingled magnetic recording SMR support that provides a 25 percent or greater increase in hard disk drive capacity by overlapping tracks on the media Power Disable feature see PWDIS pin allows for remote power cycling of SATA drives and a Rebuild Assist function that speeds up the rebuild process to help ease maintenance in the data center Transmitter Emphasis Specification increases interoperability and reliability between host and devices in electrically demanding environments An activity indicator and staggered spin up can be controlled by the same pin adding flexibility and providing users with more choices The new Power Disable feature similar to the SAS Power Disable feature uses Pin 3 of the SATA power connector Some legacy power supplies that provide 3 3 V power on Pin 3 would force drives with Power Disable feature to get stuck in a hard reset condition preventing them from spinning up The problem can usually be eliminated by using a simple Molex to SATA power adaptor to supply power to these drives 43 SATA revision 3 4 Edit Released in June 2018 SATA revision 3 4 introduced the following features that enable monitoring of device conditions and execution of housekeeping tasks both with minimal impact on performance 44 Durable Ordered Write Notification enables writing selected critical cache data to the media minimizing impact on normal operations Device Temperature Monitoring allows for active monitoring of SATA device temperature and other conditions without impacting normal operation by utilizing the SFF 8609 standard for out of band OOB communications Device Sleep Signal Timing provides additional definition to enhance compatibility between manufacturers implementations SATA revision 3 5 Edit Released in July 2020 SATA revision 3 5 Introduces features that enable increased performance benefits and promote greater integration of SATA devices and products with other industry I O standards 45 Device Transmit Emphasis for Gen 3 PHY aligns SATA with other characteristics of other I O measurement solutions to help SATA IO members with testing and integration Defined Ordered NCQ Commands allows the host to specify the processing relationships among queued commands and sets the order in which commands are processed in the queue Command Duration Limit Features reduces latency by allowing the host to define quality of service categories giving the host more granularity in controlling command properties The feature helps align SATA with the Fast Fail requirements established by the Open Compute Project OCP and specified in the INCITS T13 Technical Committee standard Cables connectors and ports Edit 2 5 inch SATA drive on top of a 3 5 inch SATA drive close up of data and power connectors Also visible are 8 jumper pins on the 3 5 inch drive Connectors and cables present the most visible differences between SATA and parallel ATA drives Unlike PATA the same connectors are used on 3 5 inch 89 mm SATA hard disks for desktop and server computers and 2 5 inch 64 mm disks for portable or small computers 46 Standard SATA connectors for both data and power have a conductor pitch of 1 27 mm 0 050 inches Low insertion force is required to mate a SATA connector A smaller mini SATA or mSATA connector is used by smaller devices such as 1 8 inch SATA drives some DVD and Blu ray drives and mini SSDs 47 A special eSATA connector is specified for external devices and an optionally implemented provision for clips to hold internal connectors firmly in place SATA drives may be plugged into SAS controllers and communicate on the same physical cable as native SAS disks but SATA controllers cannot handle SAS disks Female SATA ports on motherboards for example are for use with SATA data cables that have locks or clips to prevent accidental unplugging Some SATA cables have right or left angled connectors to ease connection to circuit boards Data connector Edit See also SATA Express connectors Standard connector data segment 48 Pin Mating Function1 1st Ground2 2nd A transmit 3 2nd A transmit 4 1st Ground5 2nd B receive 6 2nd B receive 7 1st Ground Coding notch The SATA standard defines a data cable with seven conductors three grounds and four active data lines in two pairs and 8 mm wide wafer connectors on each end SATA cables can have lengths up to 1 metre 3 3 ft and connect one motherboard socket to one hard drive PATA ribbon cables in comparison connect one motherboard socket to one or two hard drives carry either 40 or 80 wires and are limited to 45 centimetres 18 in in length by the PATA specification however cables up to 90 centimetres 35 in are readily available Thus SATA connectors and cables are easier to fit in closed spaces and reduce obstructions to air cooling Although they are more susceptible to accidental unplugging and breakage than PATA users can purchase cables that have a locking feature whereby a small usually metal spring holds the plug in the socket SATA connectors may be straight right angled or left angled Angled connectors allow lower profile connections Right angled also called 90 degree connectors lead the cable immediately away from the drive on the circuit board side Left angled also called 270 degree connectors lead the cable across the drive towards its top One of the problems associated with the transmission of data at high speed over electrical connections is described as noise which is due to electrical coupling between data circuits and other circuits As a result the data circuits can both affect other circuits and be affected by them Designers use a number of techniques to reduce the undesirable effects of such unintentional coupling One such technique used in SATA links is differential signaling This is an enhancement over PATA which uses single ended signaling The use of fully shielded dual coax conductors with multiple ground connections for each differential pair 49 improves isolation between the channels and reduces the chances of lost data in difficult electrical environments A seven pin SATA data cable left angled version of the connector SATA connector on a 3 5 inch hard drive with data pins on the left and power pins on the right The two different pin lengths ensure a specific mating order the longer lengths are ground pins and make contact first SATA 3 0 6 Gbit s cable showing the two foil shielded differential pairs Power connectors Edit Standard connector Edit Standard connector power segment Pin Mating Function Coding notch1 3rd 3 3 V power2 3rd3 2nd Enter exit Power Disable PWDIS mode 3 3 V power pre charge prior to SATA 3 3 4 1st Ground5 2nd6 2nd7 2nd 5 V power pre charge8 3rd 5 V power9 3rd10 2nd Ground11 3rd Staggered spinup activity12 1st Ground13 2nd 12 V power pre charge14 3rd 12 V power15 3rd A fifteen pin SATA power connector this particular connector is missing the orange 3 3 V wire SATA specifies a different power connector than the four pin Molex connector used on Parallel ATA PATA devices and earlier small storage devices going back to ST 506 hard disk drives and even to floppy disk drives that predated the IBM PC It is a wafer type connector like the SATA data connector but much wider fifteen pins versus seven to avoid confusion between the two Some early SATA drives included the four pin Molex power connector together with the new fifteen pin connector but most SATA drives now have only the latter The new SATA power connector contains many more pins for several reasons 50 3 3 V is supplied along with the traditional 5 V and 12 V supplies However very few drives actually use it so they may be powered from a four pin Molex connector with an adapter Pin 3 in SATA revision 3 3 has been redefined as PWDIS and is used to enter and exit the POWER DISABLE mode for compatibility with SAS specification If Pin 3 is driven HIGH 2 1 3 6 V max power to the drive circuitry is disabled Drives with this feature do not power up in systems designed to SATA revision 3 1 or earlier This is because Pin 3 driven HIGH prevents the drive from powering up 43 To reduce resistance and increase current capability each voltage is supplied by three pins in parallel though one pin in each group is intended for precharging see below Each pin should be able to carry 1 5 A Five parallel pins provide a low resistance ground connection Two ground pins and one pin for each supplied voltage support hot plug precharging Ground pins 4 and 12 in a hot swap cable are the longest so they make contact first when the connectors are mated Drive power connector pins 3 7 and 13 are longer than the others so they make contact next The drive uses them to charge its internal bypass capacitors through current limiting resistances Finally the remaining power pins make contact bypassing the resistances and providing a low resistance source of each voltage This two step mating process avoids glitches to other loads and possible arcing or erosion of the SATA power connector contacts Pin 11 can function for staggered spinup activity indication both or nothing It is an open collector signal which may be pulled down by the connector or the drive If pulled down at the connector as it is on most cable style SATA power connectors the drive spins up as soon as power is applied If left floating the drive waits until it is spoken to This prevents many drives from spinning up simultaneously which might draw too much power The pin is also pulled low by the drive to indicate drive activity This may be used to give feedback to the user through an LED Passive adapters are available that convert a four pin Molex connector to a SATA power connector providing the 5 V and 12 V lines available on the Molex connector but not 3 3 V There are also four pin Molex to SATA power adapters that include electronics to additionally provide the 3 3 V power supply 51 However most drives do not require the 3 3 V power line 52 Slimline connector Edit Slimline connector power segment Pin Mating Function Coding notch1 3rd Device presence2 2nd 5 V Power3 2nd4 2nd Manufacturing diagnostic5 1st Ground6 1st SATA 2 6 is the first revision that defined the slimline connector intended for smaller form factors such as notebook optical drives Pin 1 of the slimline power connector denoting device presence is shorter than the others to allow hot swapping The slimline signal connector is identical and compatible with the standard version while the power connector is reduced to six pins so it supplies only 5 V and not 12 V or 3 3 V 22 53 Low cost adapters exist to convert from standard SATA to slimline SATA A six pin slimline SATA power connector The back of a SATA based slimline optical drive Micro connector Edit Micro connector power segment Pin Mating Function1 3rd 3 3 V power2 2nd3 1st Ground4 1st5 2nd 5 V power6 3rd7 3rd Reserved Coding notch8 3rd Vendor specific9 2nd A 1 8 inch 46 mm micro SATA hard drive with numbered data and power pins on the connector The micro SATA connector sometimes called uSATA or mSATA 54 originated with SATA 2 6 and is intended for 1 8 inch 46 mm hard disk drives There is also a micro data connector similar in appearance but slightly thinner than the standard data connector eSATA Edit Not to be confused with SATAe The official eSATA logo SATA left and eSATA right connectors eSATA ports Standardized in 2004 eSATA e standing for external provides a variant of SATA meant for external connectivity It uses a more robust connector longer shielded cables and stricter but backward compatible electrical standards The protocol and logical signaling link transport layers and above are identical to internal SATA The differences are Minimum transmit amplitude increased Range is 500 600 mV instead of 400 600 mV Minimum receive amplitude decreased Range is 240 600 mV instead of 325 600 mV Maximum cable length increased to 2 metres 6 6 ft from 1 metre 3 3 ft The eSATA cable and connector is similar to the SATA 1 0a cable and connector with these exceptions The eSATA connector is mechanically different to prevent unshielded internal cables from being used externally The eSATA connector discards the L shaped key and changes the position and size of the guides The eSATA insertion depth is deeper 6 6 mm instead of 5 mm The contact positions are also changed The eSATA cable has an extra shield to reduce EMI to FCC and CE requirements Internal cables do not need the extra shield to satisfy EMI requirements because they are inside a shielded case The eSATA connector uses metal springs for shield contact and mechanical retention The eSATA connector has a design life of 5 000 matings the ordinary SATA connector is only specified for 50 Aimed at the consumer market eSATA enters an external storage market served also by the USB and FireWire interfaces The SATA interface has certain advantages Most external hard disk drive cases with FireWire or USB interfaces use either PATA or SATA drives and bridges to translate between the drives interfaces and the enclosures external ports this bridging incurs some inefficiency Some single disks can transfer 157 MB s during real use 18 about four times the maximum transfer rate of USB 2 0 or FireWire 400 IEEE 1394a and almost twice as fast as the maximum transfer rate of FireWire 800 The S3200 FireWire 1394b specification reaches around 400 MB s 3 2 Gbit s and USB 3 0 has a nominal speed of 5 Gbit s Some low level drive features such as S M A R T may not operate through some USB 55 or FireWire or USB FireWire bridges eSATA does not suffer from these issues provided that the controller manufacturer and its drivers presents eSATA drives as ATA devices rather than as SCSI devices as has been common with Silicon Image JMicron and NVIDIA nForce drivers for Windows Vista In those cases SATA drives do not have low level features accessible The eSATA version of SATA 6G operates at 6 0 Gbit s the term SATA III is avoided by the SATA IO organization to prevent confusion with SATA II 3 0 Gbit s which was colloquially referred to as SATA 3G bit s or SATA 300 MB s since the 1 5 Gbit s SATA I and 1 5 Gbit s SATA II were referred to as both SATA 1 5G bit s or SATA 150 MB s Therefore eSATA connections operate with negligible differences between them 56 Once an interface can transfer data as fast as a drive can handle them increasing the interface speed does not improve data transfer There are some disadvantages however to the eSATA interface Devices built before the eSATA interface became popular lack external SATA connectors For small form factor devices such as external 2 5 inch 64 mm disks a PC hosted USB or FireWire link can usually supply sufficient power to operate the device However eSATA connectors cannot supply power and require a power supply for the external device The related eSATAp but mechanically incompatible sometimes called eSATA USB connector adds power to an external SATA connection so that an additional power supply is not needed 57 As of mid 2017 few new computers have dedicated external SATA eSATA connectors with USB3 dominating and USB3 Type C often with the Thunderbolt alternate mode starting to replace the earlier USB connectors Still sometimes present are single ports supporting both USB3 and eSATA Desktop computers without a built in eSATA interface can install an eSATA host bus adapter HBA if the motherboard supports SATA an externally available eSATA connector can be added Notebook computers with the now rare Cardbus 58 or ExpressCard 59 could add an eSATA HBA With passive adapters the maximum cable length is reduced to 1 metre 3 3 ft due to the absence of compliant eSATA signal levels eSATAp Edit Main article eSATAp eSATAp port eSATAp stands for powered eSATA It is also known as Power over eSATA Power eSATA eSATA USB Combo or eSATA USB Hybrid Port EUHP An eSATAp port combines the four pins of the USB 2 0 or earlier port the seven pins of the eSATA port and optionally two 12 V power pins 60 Both SATA traffic and device power are integrated in a single cable as is the case with USB but not eSATA The 5 V power is provided through two USB pins while the 12 V power may optionally be provided Typically desktop but not notebook computers provide 12 V power so can power devices requiring this voltage typically 3 5 inch disk and CD DVD drives in addition to 5 V devices such as 2 5 inch drives Both USB and eSATA devices can be used with an eSATAp port when plugged in with a USB or eSATA cable respectively An eSATA device cannot be powered via an eSATAp cable but a special cable can make both SATA or eSATA and power connectors available from an eSATAp port An eSATAp connector can be built into a computer with internal SATA and USB by fitting a bracket with connections for internal SATA USB and power connectors and an externally accessible eSATAp port Though eSATAp connectors have been built into several devices manufacturers do not refer to an official standard Pre standard implementations Edit Prior to the final eSATA 3 Gbit s specification a number of products were designed for external connection of SATA drives Some of these use the internal SATA connector or even connectors designed for other interface specifications such as FireWire These products are not eSATA compliant The final eSATA specification features a specific connector designed for rough handling similar to the regular SATA connector but with reinforcements in both the male and female sides inspired by the USB connector eSATA resists inadvertent unplugging and can withstand yanking or wiggling which could break a male SATA connector the hard drive or host adapter usually fitted inside the computer With an eSATA connector considerably more force is needed to damage the connector and if it does break it is likely to be the female side on the cable itself citation needed which is relatively easy to replace Prior to the final eSATA 6 Gbit s specification many add on cards and some motherboards advertised eSATA 6 Gbit s support because they had 6 Gbit s SATA 3 0 controllers for internal only solutions Those implementations are non standard and eSATA 6 Gbit s requirements were ratified in the July 18 2011 SATA 3 1 specification 61 Some products might not be fully eSATA 6 Gbit s compliant Mini SATA mSATA Edit See also PCI Express Mini SATA mSATA variant An mSATA SSD Mini SATA abbreviated as mSATA which is distinct from the micro connector 54 was announced by the Serial ATA International Organization on September 21 2009 62 Applications include netbooks laptops and other devices that require a solid state drive in a small footprint The physical dimensions of the mSATA connector are identical to those of the PCI Express Mini Card interface 63 but the interfaces are electrically not compatible the data signals TX RX SATA PETn0 PETp0 PERn0 PERp0 PCI Express need a connection to the SATA host controller instead of the PCI Express host controller The M 2 specification has superseded mSATA 64 SFF 8784 connector Edit SFF 8784 connector 65 Bottom TopPin Function Pin Function Pin Function Pin Function1 Ground 6 Unused 11 Ground 16 5 V2 Ground 7 5 V 12 B transmit 17 Ground3 Ground 8 Unused 13 B transmit 18 A receive 4 Ground c 9 Unused 14 Ground 19 A receive 5 LED 10 Ground 15 5 V 20 Ground Slim 2 5 inch SATA devices 5 mm 0 20 inches in height use the twenty pin SFF 8784 edge connector to save space By combining the data signals and power lines into a slim connector that effectively enables direct connection to the device s printed circuit board PCB without additional space consuming connectors SFF 8784 allows further internal layout compaction for portable devices such as ultrabooks 65 Pins 1 to 10 are on the connector s bottom side while pins 11 to 20 are on the top side 65 SATA Express Edit Two SATA Express connectors light gray on a computer motherboard to the right of them are common SATA connectors dark gray Main article SATA Express SATA Express initially standardized in the SATA 3 2 specification 66 is an interface that supports either SATA or PCI Express storage devices The host connector is backward compatible with the standard 3 5 inch SATA data connector allowing up to two legacy SATA devices to connect 67 At the same time the host connector provides up to two PCI Express 3 0 lanes as a pure PCI Express connection to the storage device allowing bandwidths of up to 2 GB s 32 68 Instead of the otherwise usual approach of doubling the native speed of the SATA interface PCI Express was selected for achieving data transfer speeds greater than 6 Gbit s It was concluded that doubling the native SATA speed would take too much time too many changes would be required to the SATA standard and would result in a much greater power consumption when compared to the existing PCI Express bus 69 In addition to supporting legacy Advanced Host Controller Interface AHCI SATA Express also makes it possible for NVM Express NVMe to be used as the logical device interface for connected PCI Express storage devices 70 As M 2 form factor described below achieved much larger popularity SATA Express is considered as a failed standard and dedicated ports quickly disappeared from motherboards M 2 NGFF Edit Size comparison of mSATA left and M 2 size 2242 right SSDs Main article M 2 M 2 formerly known as the Next Generation Form Factor NGFF is a specification for computer expansion cards and associated connectors It replaces the mSATA standard which uses the PCI Express Mini Card physical layout Having a smaller and more flexible physical specification together with more advanced features the M 2 is more suitable for solid state storage applications in general especially when used in small devices such as ultrabooks or tablets 71 The M 2 standard is designed as a revision and improvement to the mSATA standard so that larger printed circuit boards PCBs can be manufactured While mSATA took advantage of the existing PCI Express Mini Card form factor and connector M 2 has been designed to maximize usage of the card space while minimizing the footprint 71 72 73 Supported host controller interfaces and internally provided ports are a superset to those defined by the SATA Express interface Essentially the M 2 standard is a small form factor implementation of the SATA Express interface with the addition of an internal USB 3 0 port 71 U 2 SFF 8639 Edit U 2 formerly known as SFF 8639 Like M 2 it carries a PCI Express electrical signal however U 2 uses a PCIe 3 0 4 link providing a higher bandwidth of 32 Gbit s in each direction In order to provide maximum backward compatibility the U 2 connector also supports SATA and multi path SAS 74 Protocol EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed January 2016 Learn how and when to remove this template message The SATA specification defines three distinct protocol layers physical link and transport Physical layer Edit The physical layer defines SATA s electrical and physical characteristics such as cable dimensions and parasitics driver voltage level and receiver operating range as well as the physical coding subsystem bit level encoding device detection on the wire and link initialization Physical transmission uses differential signaling The SATA PHY contains a transmit pair and receive pair When the SATA link is not in use example no device attached the transmitter allows the transmit pins to float to their common mode voltage level When the SATA link is either active or in the link initialization phase the transmitter drives the transmit pins at the specified differential voltage 1 5 V in SATA I SATA physical coding uses a line encoding system known as 8b 10b encoding This scheme serves multiple functions required to sustain a differential serial link First the stream contains necessary synchronization information that allows the SATA host drive to extract clocking The 8b 10b encoded sequence embeds periodic edge transitions to allow the receiver to achieve bit alignment without the use of a separately transmitted reference clock waveform The sequence also maintains a neutral DC balanced bitstream which lets transmit drivers and receiver inputs be AC coupled Generally the actual SATA signalling is half duplex meaning that it can only read or write data at any one time Also SATA uses some of the special characters defined in 8b 10b In particular the PHY layer uses the comma K28 5 character to maintain symbol alignment A specific four symbol sequence the ALIGN primitive is used for clock rate matching between the two devices on the link Other special symbols communicate flow control information produced and consumed in the higher layers link and transport Separate point to point AC coupled low voltage differential signaling LVDS links are used for physical transmission between host and drive The PHY layer is responsible for detecting the other SATA device on a cable and link initialization During the link initialization process the PHY is responsible for locally generating special out of band signals by switching the transmitter between electrical idle and specific 10b characters in a defined pattern negotiating a mutually supported signalling rate 1 5 3 0 or 6 0 Gbit s and finally synchronizing to the far end device s PHY layer data stream During this time no data is sent from the link layer Once link initialization has completed the link layer takes over data transmission with the PHY providing only the 8b 10b conversion before bit transmission Link layer Edit After the PHY layer has established a link the link layer is responsible for transmission and reception of Frame Information Structures FISs over the SATA link FISs are packets containing control information or payload data Each packet contains a header identifying its type and payload whose contents are dependent on the type The link layer also manages flow control over the link Transport layer Edit Layer number three in the serial ATA specification is the transport layer This layer has the responsibility of acting on the frames and transmitting receiving the frames in an appropriate sequence The transport layer handles the assembly and disassembly of FIS structures which includes for example extracting content from register FISs into the task file and informing the command layer In an abstract fashion the transport layer is responsible for creating and encoding FIS structures requested by the command layer and removing those structures when the frames are received When DMA data is to be transmitted and is received from the higher command layer the transport layer appends the FIS control header to the payload and informs the link layer to prepare for transmission The same procedure is performed when data is received but in reverse order The link layer signals to the transport layer that there is incoming data available Once the data is processed by the link layer the transport layer inspects the FIS header and removes it before forwarding the data to the command layer Topology EditSee also Port multiplier SATA topology host H multiplier M and device D SATA uses a point to point architecture The physical connection between a controller and a storage device is not shared among other controllers and storage devices SATA defines multipliers which allows a single SATA controller port to drive up to fifteen storage devices The multiplier performs the function of a hub the controller and each storage device is connected to the hub 75 This is conceptually similar to SAS expanders Modern update PC systems have SATA controllers built into the motherboard typically featuring two to eight ports Additional ports can be installed through add in SATA host adapters available in variety of bus interfaces USB PCI PCIe Backward and forward compatibility EditSATA and PATA Edit PATA hard disk with SATA converter attached At the hardware interface level SATA and PATA Parallel AT Attachment devices are completely incompatible they cannot be interconnected without an adapter At the application level SATA devices can be specified to look and act like PATA devices 76 Many motherboards offer a Legacy Mode option which makes SATA drives appear to the OS like PATA drives on a standard controller This Legacy Mode eases OS installation by not requiring that a specific driver be loaded during setup but sacrifices support for some vendor specific features of SATA Legacy Mode often if not always disables some of the boards PATA or SATA ports since the standard PATA controller interface supports only four drives Often which ports are disabled is configurable The common heritage of the ATA command set has enabled the proliferation of low cost PATA to SATA bridge chips Bridge chips were widely used on PATA drives before the completion of native SATA drives as well in standalone converters When attached to a PATA drive a device side converter allows the PATA drive to function as a SATA drive Host side converters allow a motherboard PATA port to connect to a SATA drive The market has produced powered enclosures for both PATA and SATA drives that interface to the PC through USB Firewire or eSATA with the restrictions noted above PCI cards with a SATA connector exist that allow SATA drives to connect to legacy systems without SATA connectors SATA 1 5 Gbit s and SATA 3 Gbit s Edit The designers of SATA standard as an overall goal aimed for backward and forward compatibility with future revisions of the SATA standard To prevent interoperability problems that could occur when next generation SATA drives are installed on motherboards with standard legacy SATA 1 5 Gbit s host controllers many manufacturers have made it easy to switch those newer drives to the previous standard s mode Examples of such provisions include Seagate Maxtor has added a user accessible jumper switch known as the force 150 to enable the drive switch between forced 1 5 Gbit s and 1 5 3 Gbit s negotiated operation Western Digital uses a jumper setting called OPT1 enabled to force 1 5 Gbit s data transfer speed OPT1 is enabled by putting the jumper on pins 5 and 6 Samsung drives can be forced to 1 5 Gbit s mode using software that may be downloaded from the manufacturer s website Configuring some Samsung drives in this manner requires the temporary use of a SATA 2 SATA 3 0 Gbit s controller while programming the drive The force 150 switch or equivalent is also useful for attaching SATA 3 Gbit s hard drives to SATA controllers on PCI cards since many of these controllers such as the Silicon Image chips run at 3 Gbit s even though the PCI bus cannot reach 1 5 Gbit s speeds This can cause data corruption in operating systems that do not specifically test for this condition and limit the disk transfer speed citation needed SATA 3 Gbit s and SATA 6 Gbit s Edit This section needs expansion You can help by adding to it October 2011 SATA 3 Gbit s and SATA 6 Gbit s are compatible with each other Most devices that are only SATA 3 Gbit s can connect with devices that are SATA 6 Gbit s and vice versa though SATA 3 Gbit s devices only connect with SATA 6 Gbit s devices at the slower 3 Gbit s speed SATA 1 5 Gbit s and SATA 6 Gbit s Edit This section needs expansion You can help by adding to it July 2013 SATA 1 5 Gbit s and SATA 6 Gbit s are compatible with each other Most devices that are only SATA 1 5 Gbit s can connect with devices that are SATA 6 Gbit s and vice versa though SATA 1 5 Gbit s devices only connect with SATA 6 Gbit s devices at the slower 1 5 Gbit s speed Comparison to other interfaces EditSATA and SCSI Edit Parallel SCSI uses a more complex bus than SATA usually resulting in higher manufacturing costs SCSI buses also allow connection of several drives on one shared channel whereas SATA allows one drive per channel unless using a port multiplier Serial Attached SCSI uses the same physical interconnects as SATA and most SAS HBAs also support 3 and 6 Gbit s SATA devices an HBA requires support for Serial ATA Tunneling Protocol SATA 3 Gbit s theoretically offers a maximum bandwidth of 300 MB s per device which is only slightly lower than the rated speed for SCSI Ultra 320 with a maximum of 320 MB s total for all devices on a bus 77 SCSI drives provide greater sustained throughput than multiple SATA drives connected via a simple i e command based port multiplier because of disconnect reconnect and aggregating performance 78 In general SATA devices link compatibly to SAS enclosures and adapters whereas SCSI devices cannot be directly connected to a SATA bus SCSI SAS and fibre channel FC drives are more expensive than SATA so they are used in servers and disk arrays where the better performance justifies the additional cost Inexpensive ATA and SATA drives evolved in the home computer market hence there is a view that they are less reliable As those two worlds overlapped the subject of reliability became somewhat controversial Note that in general the failure rate of a disk drive is related to the quality of its heads platters and supporting manufacturing processes not to its interface Use of serial ATA in the business market increased from 22 in 2006 to 28 in 2008 79 Comparison with other buses Edit See also List of device bit rates SCSI 3 devices with SCA 2 connectors are designed for hot swapping Many server and RAID systems provide hardware support for transparent hot swapping The designers of the SCSI standard prior to SCA 2 connectors did not target hot swapping but in practice most RAID implementations support hot swapping of hard disks Name Raw data rate Data rate Max cable length Power provided Devices per channeleSATA 6 Gbit s 600 MB s 2 m 1 m with passive SATA adapter No 1 15 with a port multiplier eSATAp 6 Gbit s 600 MB s 5 V and optionally 12 V 80 SATA Express 16 Gbit s 1 97 GB s d 1 m NoSATA revision 3 0 6 Gbit s 600 MB s 81 SATA revision 2 0 3 Gbit s 300 MB sSATA revision 1 0 1 5 Gbit s 150 MB s 82 1PATA IDE 133 1 064 Gbit s 133 3 MB s e 0 46 m 18 in 5 V only 2 5 inch drive 44 pin connector 2SAS 4 22 5 Gbit s 2 25 GB s 10 m Backplane connectors only 1 gt 65k with expanders SAS 3 12 Gbit s 1 2 GB sSAS 2 6 Gbit s 600 MB sSAS 1 3 Gbit s 300 MB sIEEE 1394 FireWire 3200 3 144 Gbit s 393 MB s 100 m more with special cables 15 W 12 25 V 63 with a hub IEEE 1394 FireWire 800 786 Mbit s 98 25 MB s 100 m 83 IEEE 1394 FireWire 400 393 Mbit s 49 13 MB s 4 5 m 83 84 USB 3 2 Generation 2x2 20 Gbit s 2 44 GB s f 1 m Passive cable USB IF Standard Yes 100 W 5 12 or 20 V 85 127 with a hub 86 USB 3 1 Generation 2 10 Gbit s 1 22 GB s g 1 m Passive cable USB IF Standard 100 W 5 12 or 20 V 85 127 with a hub 86 USB 3 0 h USB 3 2 Generation 1 5 Gbit s 610 MB s or more excl protocol overhead flow control and framing 87 2 m Passive cable USB IF Standard 4 5 W 5 VUSB 2 0 480 Mbit s 58 MB s 5 m 88 2 5 W 5 VUSB 1 1 12 Mbit s 1 5 MB s 3 m YesSCSI Ultra 320 2 56 Gbit s 320 MB s 12 m Only with SCA Backplane 15 excl host bus adapter host10GFC Fibre Channel 10 52 Gbit s 1 195 GB s 2 m 50 km No 126 16 777 216 with switches 4GFC Fibre Channel 4 25 Gbit s 398 MB s 12 mInfiniBand Quad Rate 10 Gbit s 0 98 GB s 5 m copper 89 90 lt 10 km fiber 1 with point to point many with switched fabricThunderbolt 10 Gbit s 1 22 GB s 3 m copper 100 m fiber 10 W only copper 7Thunderbolt 2 20 Gbit s 2 44 GB sThunderbolt 3 40 Gbit s 4 88 GB s 100 W only copper See also Edit Electronics portal FATA hard disk drive libATA List of device bit ratesNotes Edit Integrated Drive Electronics Disk based memory hard drives solid state disk devices such as USB drives DVD based storage bit rates bus speeds and network speeds are specified using decimal meanings for K 10001 M 10002 G 10003 etc Drive present 16 Gbit s raw bit rate with 128b 130b encoding 15 ns cycles 16 bit transfers 20 Gbit s raw bit rate with 128b 132b encoding 10 Gbit s raw bit rate with 128b 132b encoding USB 3 0 specification was released to hardware vendors on 17 November 2008 References Edit Differences between SAS and SATA a b Software status ata Wiki ata wiki kernel org 2008 08 17 Archived from the original on 2009 01 24 Retrieved 2010 01 26 a b c Serial ATA High Speed Serialized AT Attachment PDF ece umd edu Serial ATA Working Group January 7 2003 Archived from the original PDF on October 9 2016 Retrieved 2016 02 21 a b Technical Committee T13 AT Attachment Technical Committee T13 AT Attachment March 1 2011 Retrieved July 8 2019 Seagate APT and Vitesse Unveil the First Serial ATA Disc Drive at Intel Developer Forum Seagate Technology Aug 22 2000 Andrawes Mike Intel IDF Report 2 Serial ATA amp USB 2 0 AnadTech Future plc Retrieved 30 August 2020 Lamars Lawrence J Information technology AT Attachment Interface for Disk Drives Computer and Business Equipment Manufacturers Association 1994 xi introduction PDF Archived PDF from the original on 2016 06 17 Retrieved 2016 08 02 Govindarajalu B IBM PC And Clones Hardware Troubleshooting And Maintenance Amazon com Tata McGraw Hill Publishing Company 2002 p xxxi ISBN 9780070483118 Retrieved 2016 08 02 https www seagate com support disc manuals sata cuda5 sata pm pdf Serial ATA Meeting Storage Needs Today and Tomorrow PDF Archived from the original PDF on 2012 04 17 Retrieved 2011 10 30 Donald Melanson 2008 02 25 CFast CompactFlash cards now said to be coming in 18 to 24 months Engadget Archived from the original on 2009 03 03 Retrieved 2009 03 19 Pretec release CFast card with SATA interface DPReview 8 January 2009 Archived from the original on 25 October 2012 Retrieved 19 March 2009 Specification for some motherboard with eSATA connector Serial ATA SATA Linux hardware driver status report linux ata org Archived from the original on 2007 03 12 Retrieved 2010 01 26 Intel Matrix Storage Technology Unattended Installation Instructions Under Windows XP Intel 2 March 2007 Archived from the original on 2 March 2007 CS1 maint bot original URL status unknown link http kb sandisk com app answers detail a id 8142 difference between sata i sata ii and sata iii www sandisk com Sandisk Retrieved April 2016 Geoff Gasior 2004 03 08 Western Digital s Raptor WD740GD SATA hard drive Single user performance multi user potential techreport com Archived from the original on 2015 03 25 Retrieved 2015 06 16 a b Patrick Schmid and Achim Roos 2010 04 06 VelociRaptor Returns 6Gbit s 600GB And 10 000 RPM tomshardware com Retrieved 2010 06 26 SATA IO Specifications and Naming Conventions sata io org Archived from the original on 2012 08 29 Retrieved 2012 08 30 Archived copy PDF Archived PDF from the original on 2015 03 16 Retrieved 2017 11 10 CS1 maint archived copy as title link SATA IO Completes SATA Revision 2 5 Integrated Spec Slimline Connector Spec and Interoperability Program Plans Also Released www businesswire com Archived from the original on 2017 11 10 a b Serial ATA Revision 2 6 PDF Serial ATA International Organization p 115 Archived PDF from the original on 2014 10 06 a b New SATA Spec Will Double Data Transfer Rates to 6 Gbit s PDF Press release SATA IO 2008 08 18 Archived from the original PDF on 2010 09 23 Retrieved 2009 07 13 SATA Revision 3 0 SATA IO 27 May 2009 Archived from the original on 2 February 2013 Retrieved 4 December 2009 SATA IO Releases SATA Revision 3 0 Specification PDF Press release Serial ATA International Organization May 27 2009 Archived PDF from the original on 11 June 2009 Retrieved 3 July 2009 Rick Merritt 2008 08 18 Serial ATA doubles data rate to 6 Gbit s EETimes news report eetimes com Archived from the original on 2012 10 27 Retrieved 2010 01 26 SATA IO Releases Revision 3 1 Specification PDF SATA IO 2011 07 18 Archived PDF from the original on 2014 02 22 Retrieved 2013 07 22 Hilbert Hagedoorn 2011 07 20 SATA 3 1 specifications have been published guru3d com Archived from the original on 2013 05 17 Retrieved 2012 09 26 Msata Faq forum notebookreview com Archived from the original on 2012 02 10 Retrieved 2011 10 30 Serial ATA International Organization SATA Universal Storage Module USM sata io org Archived from the original on 2011 11 01 Retrieved 2011 10 30 Perenson Melissa J New Universal Storage Module Promises to Evolve Portable Data PCWorld Archived from the original on 2014 02 21 Retrieved 2014 02 12 a b SATA IO Unveils Revision 3 2 Specification PDF SATA IO 2013 08 08 Archived PDF from the original on 2016 03 04 Retrieved 2015 09 11 Enabling Higher Speed Storage Applications with SATA Express Archived 2012 11 27 at the Wayback Machine Serial ATA International Organization SATA IO announces 16Gb s SATA 3 2 specification Archived 2014 03 30 at the Wayback Machine SATA M 2 Card SATA IO Archived from the original on 2013 10 03 Retrieved 2014 01 16 SATA µSSD Archived 2013 05 08 at the Wayback Machine Serial ATA International Organization SATA IO Rolls Out USM Slim Specification for Thinner Lighter External Storage PDF SATA IO Archived PDF from the original on 2014 02 22 Retrieved 2014 02 12 SATA Enables Life Unplugged SATA IO Archived from the original on 2014 02 07 Retrieved 2014 01 16 SATA IO FAQ PDF What else is new in SATA specification v3 2 SATA IO p 2 Archived PDF from the original on 2013 10 04 Retrieved 2013 10 03 First specifications leaked from SATA IO Archived 2013 08 12 at the Wayback Machine Serial ATA International Organization GuruHT com SATA IO Expands Supported Features in Revision 3 3 Specification PDF SATA IO 2016 02 16 Archived PDF from the original on 2017 07 03 Retrieved 2016 12 26 SATA IO Frequently Asked Questions PDF SATA IO 2016 11 11 Archived PDF from the original on 2016 12 26 Retrieved 2016 12 26 a b Power Disable Feature Tech Brief PDF HGST 2016 08 04 Archived PDF from the original on 2016 11 21 Retrieved 2016 12 26 SATA IO Expands Supported Features in Revision 3 4 Specification PDF SATA IO 2018 06 25 Archived PDF from the original on 2019 06 15 Retrieved 2019 06 15 SATA IO Increases Interoperability Features with Revision 3 5 Specification PDF SATA IO 2020 07 15 Archived PDF from the original on 2020 07 19 Retrieved 2020 11 28 Can I install a laptop 2 5 SATA drive on a desktop without any adapters superuser com 2009 Archived from the original on 2013 12 02 Retrieved 2013 12 04 Get ready for mini SATA The Tech Report 2009 09 21 Archived from the original on 2009 09 25 Retrieved 2010 01 26 Serial ATA SATA pinout diagram pinoutsguide com 2013 12 16 Archived from the original on 2014 02 20 Retrieved 2014 04 02 Serial ATA Revision 3 0 6 1 8 Internal single lane cable Serial ATA SATA Serial Advanced Technology Attachment allpinouts org Archived from the original on 2008 11 08 Retrieved 2016 07 05 Example of active power adapter Archived 2017 07 12 at the Wayback Machine Serial ATA SATA power connector pinout and connections pinouts ru 2013 05 31 Archived from the original on 2013 06 28 Retrieved 2013 06 14 Archived copy PDF Archived PDF from the original on 2017 08 29 Retrieved 2017 11 10 CS1 maint archived copy as title link a b Understand the difference micro SATA vs mSATA amazon com 2013 02 23 Archived from the original on 2013 08 02 Retrieved 2013 11 06 USB smartmontools sourceforge net Archived from the original on 2012 02 07 Retrieved 2012 01 13 Questions about the indicators of health performance in percent hddlife com Archived from the original on 2007 09 24 Retrieved 2007 08 29 External Serial ATA PDF Silicon Image Inc Archived from the original PDF on 13 June 2010 Retrieved 8 August 2009 CardBus SATA adapter addonics com Archived from the original on 2011 11 04 Retrieved 2010 01 26 ExpressCard SATA adapter addonics com Archived from the original on 2011 11 29 Retrieved 2010 01 26 Addonics Technology Hybrid eSATA eSATA USB hybrid interface addonics com Archived from the original on 2011 10 30 Retrieved 2011 10 30 Frequently Asked Questions About SATA 6 Gbit s and the SATA Revision 3 0 Specification PDF May June 2009 Archived PDF from the original on 2014 02 22 Retrieved 2011 10 30 mSATA Press Release PDF Archived from the original PDF on 26 July 2011 Retrieved 11 March 2011 Intel 310 SSD PDF Intel Archived from the original PDF on 12 January 2011 Retrieved 11 March 2011 Jim Handy Jon Tanguy Jaren May David Akerson Eden Kim Tom Coughlin September 20 2014 SNIA Webcast All About M 2 SSDs PDF SNIA Retrieved July 15 2015 a b c SFF 8784 Edge Connector Pin Definitions Information Sheet PDF Western Digital 2013 Archived PDF from the original on February 26 2015 Retrieved February 26 2015 SATA Revision 3 2 SATA IO Archived from the original on 2013 08 09 Retrieved 2013 10 02 Connector Mating Matrix PDF SATA IO Archived PDF from the original on 2013 10 04 Retrieved 2013 10 02 Enabling Higher Speed Storage Applications with SATA Express SATA IO 2013 Archived from the original on 2014 02 07 Retrieved 2013 10 02 Paul Wassenberg 2013 06 25 SATA Express PCIe Client Storage PDF SATA IO Archived PDF from the original on 2013 10 04 Retrieved 2013 10 02 Dave Landsman AHCI and NVMe as Interfaces for SATA Express Devices Overview PDF SanDisk Archived PDF from the original on 2013 10 05 Retrieved 2013 10 02 a b c SATA M 2 Card SATA IO Archived from the original on 2013 10 03 Retrieved 2013 09 14 Intel SSD 530 Series Arriving Next Week Feature NGFF M 2 Interface WCCF Tech 2 July 2013 Archived from the original on 2013 09 05 Retrieved 2013 09 14 M 2 NGFF Quick Reference Guide PDF Tyco Electronics Archived from the original on 2013 08 10 Retrieved 2013 11 16 U 2 connector SATA SAS PCI e signals assignments pinoutguide com Port Multipliers SATA IO Archived from the original on 2014 08 25 Retrieved 2014 02 17 A comparison with Ultra ATA Technology PDF SATA IO Archived from the original PDF on 2012 03 27 Retrieved 2014 08 15 Ultra 640 is specified but devices do not exist FIS based switching is comparable to SCSI s tagged command queueing Serial ATA Meeting Storage Needs Today and Tomorrow PDF SATA IO Archived from the original PDF on 17 April 2012 Retrieved 26 March 2016 eSATAp Application delock de Archived from the original on 2012 02 10 Retrieved 2010 01 26 Fast Just Got Faster SATA 6Gbit s PDF sata io org May 27 2009 Archived from the original PDF on November 26 2012 Retrieved 2011 10 25 Designing Serial ATA For Today s Applications and Tomorrow s Storage Needs PDF sata io org Archived from the original on 2011 11 01 Retrieved 2011 10 25 CS1 maint bot original URL status unknown link a b FireWire Developer Note FireWire Concepts Apple Developer Connection Retrieved 2009 07 13 16 cables can be daisy chained up to 72 m a b Howse Brett September 17 2014 USB Power Delivery v2 0 Specification Finalized USB Gains Alternate Modes AnandTech Archived from the original on January 24 2015 Retrieved 2015 01 15 a b Frenzel Louis E September 25 2008 USB 3 0 Protocol Analyzer Jumpstarts 4 8 Gbit s I O Projects Electronic Design Archived from the original on May 3 2012 Retrieved 2009 07 03 Universal Serial Bus Specification Revision 3 0 20 December 2012 p 75 4 4 11 Archived from the original on 2011 05 14 Retrieved 14 April 2011 USB hubs can be daisy chained up to 25 m Minich Makia 25 June 2007 Infiniband Based Cable Comparison PDF Archived from the original PDF on 10 February 2012 Retrieved 11 February 2008 Feldman Michael 17 July 2007 Optical Cables Light Up InfiniBand HPCwire Tabor Publications amp Events p 1 Archived from the original on 29 March 2012 Retrieved 2008 02 11 External links EditWikimedia Commons has media related to Serial ATA category Serial ATA International Organization SATA IO EETimes Serial ATA and the evolution in data storage technology Mohamed A Salem SATA 1 specification as a zipped pdf Serial ATA High Speed Serialized AT Attachment Revision 1 0a 7 January 2003 Errata and Engineering Change Notices to above SATA 1 specification as a zip of pdfs External Serial ATA White Paper PDF SATA IO 515 kB on eSATA Serial ATA server and storage use cases How to Install and Troubleshoot SATA Hard Drives Serial ATA and the 7 Deadly Sins of Parallel ATA Everything You Need to Know About Serial ATA USB 3 0 vs eSATA Is faster better Universal ATA driver for Windows NT3 51 NT4 2000 XP 2003 Vista 7 ReactOS With PATA SATA AHCI support a universal free and open source ATA driver with PATA SATA support Retrieved from https en wikipedia org w index php title Serial ATA amp oldid 1058528074, wikipedia, wiki, book,

books

, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.