fbpx
Wikipedia

Sail

For other uses, see Sail (disambiguation).
See also: Sail components, Sailing, Sailboat, and Sailing ship

A sail is a tensile structure—made from fabric or other membrane materials—that uses wind power to propel sailing craft, including sailing ships, sailboats, windsurfers, ice boats, and even sail-powered land vehicles. Sails may be made from a combination of woven materials—including canvas or polyester cloth, laminated membranes or bonded filaments—usually in a three- or four-sided shape.

A sail provides propulsive force via a combination of lift and drag, depending on its angle of attack—its angle with respect to the apparent wind. Apparent wind is the air velocity experienced on the moving craft and is the combined effect of the true wind velocity with the velocity of the sailing craft. Angle of attack is often constrained by the sailing craft's orientation to the wind or point of sail. On points of sail where it is possible to align the leading edge of the sail with the apparent wind, the sail may act as an airfoil, generating propulsive force as air passes along its surface—just as an airplane wing generates lift—which predominates over aerodynamic drag retarding forward motion. The more that the angle of attack diverges from the apparent wind as a sailing craft turns downwind, the more drag increases and lift decreases as propulsive forces, until a sail going downwind is predominated by drag forces. Sails are unable to generate propulsive force if they are aligned too closely to the wind.

Sails may be attached to a mast, boom or other spar or may be attached to a wire that is suspended by a mast. They are typically raised by a line, called a halyard, and their angle with respect to the wind is usually controlled by a line, called a sheet. In use, they may be designed to be curved in both directions along their surface, often as a result of their curved edges. Battens may be used to extend the trailing edge of a sail beyond the line of its attachment points.

Other non-rotating airfoils that power sailing craft include wingsails, which are rigid wing-like structures, and kites that power kite-rigged vessels, but do not employ a mast to support the airfoil and are beyond the scope of this article.

Contents

Main articles: Square rig and Fore-and-aft rig

Sailing craft employ two types of rig, the square rig and the fore-and-aft rig.

The square rig carries the primary driving sails are carried on horizontal spars, which are perpendicular or square, to the keel of the vessel and to the masts. These spars are called yards and their tips, beyond the last stay, are called the yardarms. A ship mainly so rigged is called a square-rigger. The square rig is aerodynamically most efficient when running (sailing downwind).

A fore-and-aft rig consists of sails that are set along the line of the keel rather than perpendicular to it. Vessels so rigged are described as fore-and-aft rigged.

Egyptian sailing ship, ca. 1422–1411 BCE
Main article: Ship § History

Archaeological studies of the Cucuteni-Trypillian culture ceramics show use of sailing boats from the sixth millennium BCE onwards. Excavations of the Ubaid period (c. 6000–4300 BCE) in Mesopotamia provides direct evidence of sailing boats.

Square rigs

Sails from ancient Egypt are depicted around 3200 BCE, where reed boats sailed upstream against the River Nile's current. Ancient Sumerians used square rigged sailing boats at about the same time, and it is believed they established sea trading routes as far away as the Indus valley. Greeks and Phoenicians began trading by ship by around 1200 BCE.

Crab claw rigs

Main articles: Crab claw sail and Fore-and-aft rig

The first sea-going sailing ships were developed by the Austronesian peoples from what is now Southern China and Taiwan. Their invention of catamarans, outriggers, and the highly-efficient bi-sparred triangular crab claw sails enabled their ships to sail for vast distances in open ocean. It led to the Austronesian Expansion at around 3000 to 1500 BC. From Taiwan, they rapidly settled the islands of Maritime Southeast Asia, then sailed further onwards to Micronesia, Island Melanesia, Polynesia, and Madagascar, eventually settling a territory spanning half the globe. The proto-Austronesian words for sail, lay(r), and other rigging parts date to about 3000 BCE when this group began their Pacific expansion. Austronesian rigs were distinctive in that they had spars supporting both the upper and lower edges of the sails (and sometimes in between), in contrast to western rigs which only had a spar on the upper edge. The sails were also made from salt-resistant woven leaves, usually from pandan plants.

Crab claw sails used with single-outrigger ships in Micronesia, Island Melanesia, Polynesia, and Madagascar were intrinsically unstable when tacking leeward. To deal with this, Austronesians in these regions developed the shunting technique in sailing, in conjunction with uniquely reversible single-outriggers. In the rest of Austronesia, crab claw sails were mainly for double-outrigger (trimarans) and double-hulled (catamarans) boats, which remained stable even leeward.

In western Island Southeast Asia, later square sails also evolved from the crab claw sail, the tanja and the junk rig, both of which retained the Austronesian characteristic of having more than one spar supporting the sail.

Junk rigs were later adopted by the Chinese Song Dynasty in the 10th century CE from contact with Srivijayan trading ships (known as "Kunlun ships" in Chinese records).

Lateen rigs

Main articles: Lateen and Fore-and-aft rig

In the Mediterranean, single-yarded lateen sails emerged by around the 2nd century CE. Though its origin remains contentious, it is believed that it developed from early contact with Southeast Asian Austronesian trading ships in the Indian Ocean with crab claw sails.

The fore-and-aft rig began as a convention of southern Europe and the Mediterranean Sea: the generally gentle climate made its use practical, and in Italy a few centuries before the Renaissance it began to replace the square rig which had dominated all of Europe since the dawn of sea travel. Northern Europeans were resistant to adopting the fore-and-aft rig, despite having seen its use in the course of trade and during the Crusades. The Renaissance changed this: beginning in 1475, their use increased and within a hundred years the fore-and-aft rig was in common use on rivers and in estuaries in Britain, northern France, and the Low Countries, though the square rig remained standard for the harsher conditions of the open North Sea as well as for trans-Atlantic sailing. The lateen sail proved to have better upwind performance for smaller vessels.

During the 16th-19th centuries other fore-and-aft sails were developed in Europe, such as the spritsail, gaff rig, jib, genoa, staysail, and Bermuda rig mainsail, improving the upwind sailing ability of European vessels.

Aerodynamic forces for two points of sail.
Left-hand boat:
Down wind—predominant drag propels the boat with little heeling moment.
Right-hand boat:
Up wind (close-hauled)—predominant lift both propels the boat and contributes to heel.
Sail angles of attack and resulting (idealized) flow patterns that provide propulsive lift.
Main article: Forces on sails

Aerodynamic forces on sails depend on wind speed and direction and the speed and direction of the craft. The direction that the craft is traveling with respect to the true wind (the wind direction and speed over the surface) is called the "point of sail". The speed of the craft at a given point of sail contributes to the apparent wind (VA)—the wind speed and direction as measured on the moving craft. The apparent wind on the sail creates a total aerodynamic force, which may be resolved into drag—the force component in the direction of the apparent wind—and lift—the force component normal (90°) to the apparent wind. Depending on the alignment of the sail with the apparent wind, lift or drag may be the predominant propulsive component. Total aerodynamic force also resolves into a forward, propulsive, driving force—resisted by the medium through or over which the craft is passing (e.g. through water, air, or over ice, sand)—and a lateral force, resisted by the underwater foils, ice runners, or wheels of the sailing craft.

For apparent wind angles aligned with the entry point of the sail, the sail acts as an airfoil and lift is the predominant component of propulsion. For apparent wind angles behind the sail, lift diminishes and drag increases as the predominant component of propulsion. For a given true wind velocity over the surface, a sail can propel a craft to a higher speed, on points of sail when the entry point of the sail is aligned with the apparent wind, than it can with the entry point not aligned, because of a combination of the diminished force from airflow around the sail and the diminished apparent wind from the velocity of the craft. Because of limitations on speed through the water, displacement sailboats generally derive power from sails generating lift on points of sail that include close-hauled through broad reach (approximately 40° to 135° off the wind). Because of low friction over the surface and high speeds over the ice that create high apparent wind speeds for most points of sail, iceboats can derive power from lift further off the wind than displacement boats.

Downwind sailing with a spinnaker
  • Spinnaker set for a broad reach, mobilizing both lift and drag.

  • Spinnaker cross-section trimmed for a broad reach showing air flow.

  • Spinnaker downwind, primarily mobilizing drag.

  • Spinnaker cross-section with following apparent wind, showing air flow.

Different sail types.
A. Square: Course
B. Square: Topsail
C. Lateen
D. Staysail
E. Gaff-rigged
G. Quadrilateral on spar
H. Loose-footed on gaff
J. Spritsail
K. Standing lug
L. Triangular
M. Dipping lug
N. Junk
See also: Sail plan

Each rig is configured in a sail plan, appropriate to the size of the sailing craft. A sail plan is a set of drawings, usually prepared by a naval architect which shows the various combinations of sail proposed for a sailing ship. Sail plans may vary for different wind conditions—light to heavy. Both square-rigged and fore-and-aft rigged vessels have been built with a wide range of configurations for single and multiple masts.

Types of sail that can be part of a sail plan can be broadly classed by how they are attached to the sailing craft:

  • To a stay – Sails attached to stays, include jibs, which are attached to forestays and staysails, which are mounted on other stays (typically wire cable) that support other masts from the bow aft.
  • To a mast – Fore-and-aft sails directly attached to the mast at the luff include gaff-rigged quadrilateral and Bermuda triangular sails.
  • To a spar – Sails attached to a spar include both square sails and such fore-and-aft quadrilateral sails as lug rigs, junk and spritsails and such triangular sails as the lateen, and the crab claw.
  • To a halyardSpinnakers are the predominant sail supported solely by a halyard.

High-performance yachts, including the International C-Class Catamaran, have used or use rigid wing sails, which perform better than traditional soft sails but are more difficult to manage. A rigid wing sail was used by Stars and Stripes, the defender which won the 1988 America's Cup, and by USA-17, the challenger which won the 2010 America's Cup. USA 17's performance during the 2010 America's Cup races demonstrated a velocity made good upwind of over twice the wind speed and downwind of over 2.5 times the wind speed and the ability to sail as close as 20 degrees off the apparent wind.

Corners and sides of a quadrilateral fore-and-aft sail

The shape of a sail is defined by its edges and corners in the plane of the sail, laid out on a flat surface. The edges may be curved, either to extend the sail's shape as an airfoil or to define its shape in use. In use, the sail becomes a curved shape, adding the dimension of depth or draft.

  • Edges – The top of all sails is called the head, the leading edge is called the luff on fore-and-aft sails and on windward leech symmetrical sails, the trailing edge is the leech, and the bottom edge is the foot. The head is attached at the throat and peak to a gaff, yard, or sprit. For a triangular sail the head refers to the topmost corner.
A fore-and-aft triangular mainsail achieves a better approximation of a wing form by extending the leech aft, beyond the line between the head and clew on an arc called the roach, rather than having a triangular shape. This added area would flutter in the wind and not contribute to the efficient airfoil shape of the sail without the presence of battens. Offshore cruising mainsails sometimes have a hollow leech (the inverse of a roach) to obviate the need for battens and their ensuing likelihood of chafing the sail. The roach on a square sail design is the arc of a circle above a straight line from clew to clew at the foot of a square sail, which allows the foot of the sail to clear stays coming up the mast, as the sails are rotated from side to side.
  • Corners – The names of corners of sails vary, depending on shape and symmetry. In a triangular sail, the corner where the luff and the leech connect is called the head. On a square sail, the top corners are head cringles, where there are grommets, called cringles. On a quadrilateral sail, the peak is the upper aft corner of the sail, at the top end of a gaff or other spar. The throat is the upper forward corner of the sail, at the bottom end of a gaff or other spar. Gaff-rigged sails, and certain similar rigs, employ two halyards to raise the sails: the throat halyard raises the forward, throat end of the gaff, while the peak halyard raises the aft, peak end.
The corner where the leech and foot connect is called the clew on a fore-and-aft sail. On a jib, the sheet is connected to the clew; on a mainsail, the sheet is connected to the boom (if present) near the clew. Clews are the lower two corners of a square sail. Square sails have sheets attached to their clews like triangular sails, but the sheets are used to pull the sail down to the yard below rather than to adjust the angle it makes with the wind. The corner where the leech and the foot connect is called the clew. The corner on a fore-and-aft sail where the luff and foot connect is called the tack and, on a mainsail, is located where the boom and mast connect.
In the case of a symmetrical spinnaker, each of the lower corners of the sail is a clew. However, under sail on a given tack, the corner to which the spinnaker sheet is attached is called the clew, and the corner attached to the spinnaker pole is referred to as the tack. On a square sail underway, the tack is the windward clew and also the line holding down that corner.
  • Draft – Those triangular sails that are attached to both a mast along the luff and a boom along the foot have depth, called draft, which results from the luff and foot being curved, rather than straight as they are attached to those spars. Draft creates a more efficient airfoil shape for the sail. Draft can also be induced in triangular staysails by adjustment of the sheets and the angle from which they reach the sails.
Laminated sail with Kevlar and carbon fibers.

Sail characteristics derive, in part, from the design, construction and the attributes of the fibers, which are woven together to make the sail cloth. There are several key factors in evaluating a fiber for suitability in weaving a sail-cloth: initial modulus, breaking strength (tenacity), creep, and flex strength. Both the initial cost and its durability of the material define its cost-effectiveness over time.

Traditionally, sails were made from flax or cotton canvas. Materials used in sails, as of the 21st century, include nylon for spinnakers—where light weight and elastic resistance to shock load are valued—and a range of fibers, used for triangular sails, that includes Dacron, aramid fibers—including Kevlar, and other liquid crystal polymer fibers—including Vectran. Woven materials, like Dacron, may specified as either high or low tenacity, as indicated, in part by their denier count (a unit of measure for the linear mass density of fibers).

Cross-cut genoa jib with sail components.

Conventional sails comprise panels, which are most often stitched together, other times adhered. There are two basic configurations, cross-cut and radial.

Cross-cut sails have the panels sewn parallel to one another, often parallel to the foot of the sail, and are the least expensive of the two sail constructions. Triangular cross-cut sail panels are designed to meet the mast and stay at an angle from either the warp or the weft (on the bias) to allow stretching along the luff, but minimize strutting on the luff and foot, where the fibers are aligned with the edges of the sail.

Radial sails have panels that "radiate" from corners in order to efficiently transmit stress and are typically higher-performance than cross-cut sails. A bi-radial sail has panels radiating from two of three corners; a tri-radial sail has panels radiating from all three corners. Mainsails are more likely to be bi-radial, since there is very little stress at the tack, whereas head sails (spinnakers and jibs) are more likely to be tri-radial, because they are tensioned at their corners.

Higher-performance sails may be laminated, constructed directly from multiple plies of filaments, fibers, taffetas, and films—instead of woven textiles—and adhered together. Molded sails are laminated sails formed over a curved mold and adhered together into a shape that does not lie flat.

Conventional sail panels are sewn together. Sails are tensile structures, so the role of a seam is to transmit a tensile load from panel to panel. For a sewn textile sail this is done through thread and is limited by the strength of the thread and the strength of the hole in the textile through which it passes. Sail seams are often overlapped between panels and sewn with zig-zag stitches that create many connections per unit of seam length.

Whereas textiles are typically sewn together, other sail materials may be ultrasonically welded—a technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to workpieces being held together under pressure to create a solid-state weld. It is commonly used for plastics, and especially for joining dissimilar materials.

Sails feature reinforcements of fabric layers where lines attach at grommets or cringles. A bolt rope may be sewn onto the edges of a sail to reinforce it, or to fix the sail into a groove in the boom, in the mast, or in the luff foil of a roller-furling jib. They may have stiffening features, called battens, that help shape the sail, when full length, or just the roach, when present. They may have a variety of means of reefing them (reducing sail area), including rows of short lines affixed to the sail to wrap up unused sail, as on square and gaff rigs, or simply grommets through which a line or a hook may pass, as on Bermuda mainsails. Fore-and-aft sails may have tell-tales—pieces of yarn, thread or tape that are affixed to sails—to help visualize airflow over their surfaces.

Running rigging on a sailing yacht:
1. Main sheet
2. Jib sheet
3. Boom vang
4. Downhaul
5. Jib halyard
Square sail edges and corners (top). Running rigging (bottom).
Main article: Running rigging

The lines that attach to and control sails are part of the running rigging and differ between square and fore-and-aft rigs. Some rigs shift from one side of the mast to the other, e.g. the dipping lug sail and the lateen. The lines can be categorized as those that support the sail, those that shape it, and those that control its angle to the wind.

Fore-and-aft rigged vessels

Fore-and-aft rigged vessels have rigging that supports, shapes, and adjusts the sails to optimize their performance in the wind, which include the following lines:

  • SupportingHalyards raise sails and control luff tension. Topping lifts hold booms and yards aloft. On a gaff sail, brails run from the leech to the spar to facilitate furling.
  • ShapingBarber haulers adjust a spinnaker/jib sheeting angle inboard at right angles to the sheet with a ring or clip on the sheet attached to cordage which is secured and adjusted via fairlead and cam cleat. Kicking straps/boom vangs control a boom-footed sail's leech tension by exerting downward force mid-boom. Cunninghams tighten the luff of a boom-footed sail by pulling downward on a cringle in the luff of a mainsail above the tack. Downhauls lower a sail or a yard and can adjust the tension on the luff of a sail. Outhauls control the foot tension of a boom-footed sail.
  • Adjusting angle to the windSheets control angle of attack with respect to the apparent wind, the amount of leech "twist" near the head of the sail, and the foot tension of loose-footed sails. A preventer attaches to the end of the boom from a point near the mast to prevent an accidental gybe. Guys control spinnaker pole angle with respect to the apparent wind.

Square-rigged vessels

Square-rigged vessels require more controlling lines than fore-and-aft rigged ones, including the following.

  • SupportingHalyards raise and lower the yards. Brails run from the leech to the spar to facilitate furling. Buntlines serve to raise the foot up for shortening sail or for furling. Lifts adjust the tilt of a yard, to raise or lower the ends off the horizontal. Leechlines run to the leech (outer vertical edges) of a sail and serve to pull the leech both in and up when furling.
  • ShapingBowlines run from the leech forward towards the bow to control the weather leech, keeping it taut and thus preventing it from curling back on itself. Clewlines raise the clews to the yard above.
  • Adjusting angle to the windBraces adjust the fore and aft angle of a yard (i.e. to rotate the yard laterally, fore and aft, around the mast). Sheets attach to the clew to control the sail's angle to the wind. Tacks haul the clew of a square sail forward.

Sails on high-performance sailing craft.

Sails on craft subject to low forward resistance and high lateral resistance typically have full-length battens.


  1. Genoa jib
    1. Head
    2. Reinforcement
    3. Luff
    4. Leech
    5. Anti-UV covering
    6. Head foil attachment
    7. Panel(s)
    8. Telltales
    9. Reinforcement
    10. Tack
    11. Leech control
    12. Clew
    13. Foot control
    14. Foot
    15. Furling marks
  1. Oxford English Dictionary
  2. Keegan, John (1989). The Price of Admiralty. New York: Viking. p. 280. ISBN 0-670-81416-4.
  3. Mclaughlan, Ian (2014). The Sloop of War: 1650-1763. Seaforth Publishing. p. 288. ISBN 9781848321878. Archived from the original on 2017-11-11.
  4. Knight, Austin Melvin (1910). Modern seamanship. New York: D. Van Nostrand. pp. 507–532.
  5. Gimbutas, Marija (2007). "1". The goddesses and gods of Old Europe, 6500–3500 BCE: myths and cult images (New and updated ed.). Berkeley: University of California Press. p. 18. ISBN 9780520253988. The use of sailing-boats is attested from the sixth millenium onwards by their incised depiction on ceramics.
  6. Carter, Robert (2012). "19". In Potts, D.T. (ed.). A companion to the archaeology of the ancient Near East. Ch 19 Watercraft. Chichester, West Sussex: Wiley-Blackwell. pp. 347–354. ISBN 978-1-4051-8988-0. Archived from the original on 28 April 2015. Retrieved8 February 2014.
  7. John Coleman Darnell (2006). "The Wadi of the Horus Qa-a: A Tableau of Royal Ritual Power in the Theban Western Desert". Yale. Archived from the original on 2011-02-01. Retrieved2010-08-24.
  8. The sea-craft of prehistory, p76, by Paul Johnstone, Routledge, 1980
  9. Meacham, Steve (11 December 2008). "Austronesians were first to sail the seas". The Sydney Morning Herald. Retrieved28 April 2019.
  10. Doran, Edwin, Jr. (1974). "Outrigger Ages". The Journal of the Polynesian Society. 83 (2): 130–140.
  11. Mahdi, Waruno (1999). "The Dispersal of Austronesian boat forms in the Indian Ocean". In Blench, Roger; Spriggs, Matthew (eds.). Archaeology and Language III: Artefacts languages, and texts. One World Archaeology. 34. Routledge. pp. 144–179. ISBN 978-0415100540.[dead link]
  12. Lewis, David (1994). We, the Navigators : the ancient art of landfinding in the Pacific (2nd ed.). Honolulu: University of Hawaii Press. p. 7. ISBN 0-8248-1582-3.
  13. Kirch, Patrick Vinton (2012). A Shark Going Inland Is My Chief: The Island Civilization of Ancient Hawai'i. University of California Press. pp. 25–26. ISBN 9780520953833.
  14. Gallaher, Timothy (2014). "The Past and Future of Hala (Pandanus tectorius) in Hawaii". In Keawe, Lia O'Neill M.A.; MacDowell, Marsha; Dewhurst, C. Kurt (eds.). ʻIke Ulana Lau Hala: The Vitality and Vibrancy of Lau Hala Weaving Traditions in Hawaiʻi. Hawai'inuiakea School of Hawaiian Knowledge ; University of Hawai'i Press. doi:10.13140/RG.2.1.2571.4648. ISBN 9780824840938.
  15. Doran, Edwin B. (1981). Wangka: Austronesian Canoe Origins. Texas A&M University Press. ISBN 9780890961070.
  16. Beheim, B. A.; Bell, A. V. (23 February 2011). "Inheritance, ecology and the evolution of the canoes of east Oceania". Proceedings of the Royal Society B: Biological Sciences. 278 (1721): 3089–3095. doi:10.1098/rspb.2011.0060. PMC3158936. PMID 21345865.
  17. Hornell, James (1932). "Was the Double-Outrigger Known in Polynesia and Micronesia? A Critical Study". The Journal of the Polynesian Society. 41 (2 (162)): 131–143.
  18. Shaffer, Lynda Norene (1996). Maritime Southeast Asia to 1500. M.E. Sharpe.
  19. Hourani, George Fadlo (1951). Arab Seafaring in the Indian Ocean in Ancient and Early Medieval Times. New Jersey: Princeton University Press.
  20. Johnstone, Paul (1980). The Seacraft of Prehistory. Cambridge: Harvard University Press. ISBN 978-0674795952.
  21. L. Pham, Charlotte Minh-Hà (2012). Asian Shipbuilding Technology. Bangkok: UNESCO Bangkok Asia and Pacific Regional Bureau for Education. p. 20. ISBN 978-92-9223-413-3.
  22. Maguin, Pierre-Yves (September 1980). "The Southeast Asian Ship: An Historical Approach". Journal of Southeast Asian Studies. 11 (2): 266–276. doi:10.1017/S002246340000446X. JSTOR 20070359.
  23. I. C. Campbell, "The Lateen Sail in World History" Archived 2016-08-04 at the Wayback Machine, Journal of World History (University of Hawaii), 6.1 (Spring 1995), p. 1–23
  24. Marchaj, Czeslaw A. Sail Performance, Techniques to Maximize Sail Power, Revised Edition. London: Adlard Coles Nautical, 2003. Part 2 Aerodynamics of sails, Chapter 11 "The Sail Power of Various Rigs"
  25. Chatterton, Edward Keble (1912). Fore and aft. London: J. B. Lippincott. p. 203. OCLC 651733391. fore and aft rig schooner.
  26. Castro, F.; Fonseca, N.; Vacas, T.; Ciciliot, F. (2008), "A Quantitative Look at Mediterranean Lateen- and Square-Rigged Ships (Part 1)", The International Journal of Nautical Archaeology, 37 (2), pp. 347–359, doi:10.1111/j.1095-9270.2008.00183.x
  27. Clancy, L.J. (1975), Aerodynamics, London: Pitman Publishing Limited, p. 638, ISBN 0-273-01120-0
  28. Jobson, Gary (1990). Championship Tactics: How Anyone Can Sail Faster, Smarter, and Win Races. New York: St. Martin's Press. pp. 323. ISBN 0-312-04278-7.
  29. Bethwaite, Frank (2007). High Performance Sailing. Adlard Coles Nautical. ISBN 978-0-7136-6704-2.
  30. Clerc-Rampal, G. (1913) Mer : la Mer Dans la Nature, la Mer et l'Homme, Paris: Librairie Larousse, p. 213
  31. Folkard, Henry Coleman (2012). Sailing Boats from Around the World: The Classic 1906 Treatise. Dover Maritime. Courier Corporation. p. 576. ISBN 9780486311340. Archived from the original on 2017-11-11.
  32. Nielsen, Peter (May 14, 2014). "Have Wingsails Gone Mainstream?". Sail. Archived from the original on April 12, 2015. Retrieved2015-01-24.
  33. "America's cup: BMW Oracle Racing pushes edge in 90-foot trimaran". International Herald Tribune. 2008-11-08. Archived from the original on 2008-12-11. Retrieved2009-03-07.
  34. Swintal, Diane (13 August 2009). "Russell Coutts Talks About BMW Oracle's Giant Multi-hull". cupinfo.com. Archived from the original on 17 February 2012. Retrieved2012-04-25.
  35. SAIL Editors. "Know How: Sailing 101". Sail Magazine. Archived from the original on 5 October 2016. Retrieved4 October 2016.
  36. King, Hattendorf & Estes 2000, p. 283.
  37. Textor, Ken (1995). The New Book of Sail Trim. Sheridan House, Inc. p. 228. ISBN 0924486813. Archived from the original on 2016-05-17.
  38. Nicolson, Ian (1998). A Sail for All Seasons: Cruising and Racing Sail Tips. Sheridan House, Inc. p. 124. ISBN 9781574090475. Archived from the original on 2017-11-11.
  39. Kipping, Robert (1847). The Elements of Sailmaking: Being a Complete Treatise on Cutting-out Sails, According to the Most Approved Methods in the Merchant Service... F.W. Norie & Wilson. pp. 58–72.
  40. Jobson, Gary (2008). Sailing Fundamentals (Revised ed.). New York: Simon and Schuster. p. 224. ISBN 978-1439136782. Archived from the original on 2017-11-11.
  41. Knight, Austin N. (1921). Modern Seamanship (8 ed.). New York: D. van Nostrand Company. pp. 831. head cringle.
  42. King, Dean; Hattendorf, John B.; Estes, J W. (2000). A sea of words: a lexicon and companion for Patrick O'Brian's seafaring tales (3 ed.). New York: Henry Holt. p. 518. ISBN 978-0-8050-6615-9. Archived from the original on 2017-11-11.
  43. "Sailing Quick Reference Guide"(PDF). Wayzata Yacht Club. Wayzata Yacht Club. Archived(PDF) from the original on 5 January 2017. Retrieved4 October 2016.
  44. King, Hattendorf & Estes 2000, p. 416.
  45. Jinks, Simon. "Adjusting Sail Draft". Royal Yachting Association. Royal Yachting Association. Archived from the original on 5 October 2016. Retrieved4 October 2016.
  46. Hancock, Brian; Knox-Johnson, Robin (2003).Maximum Sail Power: The Complete Guide to Sails, Sail Technology, and Performance. Nomad Press. pp. 288. ISBN 9781619304277. sail panel cut.
  47. Rice, Carol (January 1995), "A first-time buyers checklist", Cruising World, 21, pp. 34–35, ISSN 0098-3519, archived from the original on 2017-11-11, retrieved2017-01-13
  48. Colgate, Stephen (1996). Fundamentals of Sailing, Cruising, and Racing. W. W. Norton & Company. p. 384. ISBN 9780393038118. Archived from the original on 2017-11-11.
  49. Jones, I.; Stylios, G.K. (2013), Joining Textiles: Principles and Applications, Woodhead Publishing Series in Textiles, Elsevier, p. 624, ISBN 9780857093967, retrieved2017-01-12
  50. Berman, Phil (1999).Catamaran Sailing: From Start to Finish. W. W. Norton & Company. pp. 219. ISBN 9780393318807. Catamaran batten.
  51. Cunliffe, Tom (2004). Hand, Reef and Steer. Sheridan House, Inc. p. 178. ISBN 9781574092035. Archived from the original on 2017-11-11.
  52. Hahne, Peter (2005). Sail Trim: Theory and Practice. Sheridan House, Inc. p. 120. ISBN 9781574091984.
  53. Howard, Jim; Doane, Charles J. (2000). Handbook of Offshore Cruising: The Dream and Reality of Modern Ocean Cruising. Sheridan House, Inc. p. 468. ISBN 9781574090932.
  54. Biddlecombe, George (1990). The Art of Rigging: Containing an Explanation of Terms and Phrases and the Progressive Method of Rigging Expressly Adapted for Sailing Ships. Dover Maritime Series. Courier Corporation. pp. 155. ISBN 9780486263434. The Art of Rigging: Containing an Explanation of Terms and Phrases and the ... By George Biddlecombe.
  55. Schweer, Peter (2006). How to Trim Sails. Sailmate. Sheridan House, Inc. p. 105. ISBN 9781574092202.
  56. Holmes, Rupert; Evans, Jeremy (2014). The Dinghy Bible: The Complete Guide for Novices and Experts. A&C Black. p. 192. ISBN 9781408188002.
Wikimedia Commons has media related tosails.
Look up sail in Wiktionary, the free dictionary.

Sail
Sail Language Watch Edit For other uses see Sail disambiguation See also Sail components Sailing Sailboat and Sailing ship A sail is a tensile structure made from fabric or other membrane materials that uses wind power to propel sailing craft including sailing ships sailboats windsurfers ice boats and even sail powered land vehicles Sails may be made from a combination of woven materials including canvas or polyester cloth laminated membranes or bonded filaments usually in a three or four sided shape Sail rigsSquare rigged frigateBermuda rigged yawl Sailing hydrofoil catamaran with wingsail A sail provides propulsive force via a combination of lift and drag depending on its angle of attack its angle with respect to the apparent wind Apparent wind is the air velocity experienced on the moving craft and is the combined effect of the true wind velocity with the velocity of the sailing craft Angle of attack is often constrained by the sailing craft s orientation to the wind or point of sail On points of sail where it is possible to align the leading edge of the sail with the apparent wind the sail may act as an airfoil generating propulsive force as air passes along its surface just as an airplane wing generates lift which predominates over aerodynamic drag retarding forward motion The more that the angle of attack diverges from the apparent wind as a sailing craft turns downwind the more drag increases and lift decreases as propulsive forces until a sail going downwind is predominated by drag forces Sails are unable to generate propulsive force if they are aligned too closely to the wind Sails may be attached to a mast boom or other spar or may be attached to a wire that is suspended by a mast They are typically raised by a line called a halyard and their angle with respect to the wind is usually controlled by a line called a sheet In use they may be designed to be curved in both directions along their surface often as a result of their curved edges Battens may be used to extend the trailing edge of a sail beyond the line of its attachment points Other non rotating airfoils that power sailing craft include wingsails which are rigid wing like structures and kites that power kite rigged vessels but do not employ a mast to support the airfoil and are beyond the scope of this article Contents 1 Rigs 2 History 2 1 Square rigs 2 2 Crab claw rigs 2 3 Lateen rigs 3 Aerodynamic forces 4 Types 5 Shape 6 Material 7 Construction 8 Running rigging 8 1 Fore and aft rigged vessels 8 2 Square rigged vessels 9 Gallery 10 See also 11 Legend 12 References 13 Further reading 14 External linksRigs EditMain articles Square rig and Fore and aft rig Sailing craft employ two types of rig the square rig and the fore and aft rig The square rig carries the primary driving sails are carried on horizontal spars which are perpendicular or square to the keel of the vessel and to the masts These spars are called yards and their tips beyond the last stay are called the yardarms 1 A ship mainly so rigged is called a square rigger 2 The square rig is aerodynamically most efficient when running sailing downwind 3 A fore and aft rig consists of sails that are set along the line of the keel rather than perpendicular to it Vessels so rigged are described as fore and aft rigged 4 History Edit Egyptian sailing ship ca 1422 1411 BCE Main article Ship History Archaeological studies of the Cucuteni Trypillian culture ceramics show use of sailing boats from the sixth millennium BCE onwards 5 Excavations of the Ubaid period c 6000 4300 BCE in Mesopotamia provides direct evidence of sailing boats 6 Square rigs Edit Sails from ancient Egypt are depicted around 3200 BCE 7 8 where reed boats sailed upstream against the River Nile s current Ancient Sumerians used square rigged sailing boats at about the same time and it is believed they established sea trading routes as far away as the Indus valley Greeks and Phoenicians began trading by ship by around 1200 BCE Crab claw rigs Edit Fijian voyaging outrigger boat with a crab claw sail Main articles Crab claw sail and Fore and aft rig The first sea going sailing ships were developed by the Austronesian peoples from what is now Southern China and Taiwan Their invention of catamarans outriggers and the highly efficient bi sparred triangular crab claw sails enabled their ships to sail for vast distances in open ocean It led to the Austronesian Expansion at around 3000 to 1500 BC From Taiwan they rapidly settled the islands of Maritime Southeast Asia then sailed further onwards to Micronesia Island Melanesia Polynesia and Madagascar eventually settling a territory spanning half the globe 9 10 11 The proto Austronesian words for sail lay r and other rigging parts date to about 3000 BCE when this group began their Pacific expansion 12 Austronesian rigs were distinctive in that they had spars supporting both the upper and lower edges of the sails and sometimes in between in contrast to western rigs which only had a spar on the upper edge 9 10 11 The sails were also made from salt resistant woven leaves usually from pandan plants 13 14 Crab claw sails used with single outrigger ships in Micronesia Island Melanesia Polynesia and Madagascar were intrinsically unstable when tacking leeward To deal with this Austronesians in these regions developed the shunting technique in sailing in conjunction with uniquely reversible single outriggers In the rest of Austronesia crab claw sails were mainly for double outrigger trimarans and double hulled catamarans boats which remained stable even leeward 11 15 10 16 17 In western Island Southeast Asia later square sails also evolved from the crab claw sail the tanja and the junk rig both of which retained the Austronesian characteristic of having more than one spar supporting the sail 18 19 20 Junk rigs were later adopted by the Chinese Song Dynasty in the 10th century CE from contact with Srivijayan trading ships known as Kunlun ships in Chinese records 21 22 Lateen rigs Edit A traditional Maldivian Baghlah with a fore and aft rig lateen rig Main articles Lateen and Fore and aft rig In the Mediterranean single yarded lateen sails emerged by around the 2nd century CE 23 24 Though its origin remains contentious it is believed that it developed from early contact with Southeast Asian Austronesian trading ships in the Indian Ocean with crab claw sails 18 19 20 9 The fore and aft rig began as a convention of southern Europe and the Mediterranean Sea the generally gentle climate made its use practical and in Italy a few centuries before the Renaissance it began to replace the square rig which had dominated all of Europe since the dawn of sea travel Northern Europeans were resistant to adopting the fore and aft rig despite having seen its use in the course of trade and during the Crusades The Renaissance changed this beginning in 1475 their use increased and within a hundred years the fore and aft rig was in common use on rivers and in estuaries in Britain northern France and the Low Countries though the square rig remained standard for the harsher conditions of the open North Sea as well as for trans Atlantic sailing The lateen sail proved to have better upwind performance for smaller vessels 25 26 During the 16th 19th centuries other fore and aft sails were developed in Europe such as the spritsail gaff rig jib genoa staysail and Bermuda rig mainsail improving the upwind sailing ability of European vessels Aerodynamic forces Edit Aerodynamic forces for two points of sail Left hand boat Down wind predominant drag propels the boat with little heeling moment Right hand boat Up wind close hauled predominant lift both propels the boat and contributes to heel Sail angles of attack and resulting idealized flow patterns that provide propulsive lift Main article Forces on sails Aerodynamic forces on sails depend on wind speed and direction and the speed and direction of the craft The direction that the craft is traveling with respect to the true wind the wind direction and speed over the surface is called the point of sail The speed of the craft at a given point of sail contributes to the apparent wind VA the wind speed and direction as measured on the moving craft The apparent wind on the sail creates a total aerodynamic force which may be resolved into drag the force component in the direction of the apparent wind and lift the force component normal 90 to the apparent wind Depending on the alignment of the sail with the apparent wind lift or drag may be the predominant propulsive component Total aerodynamic force also resolves into a forward propulsive driving force resisted by the medium through or over which the craft is passing e g through water air or over ice sand and a lateral force resisted by the underwater foils ice runners or wheels of the sailing craft 27 For apparent wind angles aligned with the entry point of the sail the sail acts as an airfoil and lift is the predominant component of propulsion For apparent wind angles behind the sail lift diminishes and drag increases as the predominant component of propulsion For a given true wind velocity over the surface a sail can propel a craft to a higher speed on points of sail when the entry point of the sail is aligned with the apparent wind than it can with the entry point not aligned because of a combination of the diminished force from airflow around the sail and the diminished apparent wind from the velocity of the craft Because of limitations on speed through the water displacement sailboats generally derive power from sails generating lift on points of sail that include close hauled through broad reach approximately 40 to 135 off the wind 28 Because of low friction over the surface and high speeds over the ice that create high apparent wind speeds for most points of sail iceboats can derive power from lift further off the wind than displacement boats 29 Downwind sailing with a spinnaker Spinnaker set for a broad reach mobilizing both lift and drag Spinnaker cross section trimmed for a broad reach showing air flow Spinnaker downwind primarily mobilizing drag Spinnaker cross section with following apparent wind showing air flow Types Edit Different sail types 30 A Square Course B Square Topsail C Lateen D Staysail E Gaff rigged G Quadrilateral on spar H Loose footed on gaff J Spritsail K Standing lug L Triangular M Dipping lug N Junk See also Sail plan Each rig is configured in a sail plan appropriate to the size of the sailing craft A sail plan is a set of drawings usually prepared by a naval architect which shows the various combinations of sail proposed for a sailing ship Sail plans may vary for different wind conditions light to heavy Both square rigged and fore and aft rigged vessels have been built with a wide range of configurations for single and multiple masts 31 Types of sail that can be part of a sail plan can be broadly classed by how they are attached to the sailing craft To a stay Sails attached to stays include jibs which are attached to forestays and staysails which are mounted on other stays typically wire cable that support other masts from the bow aft To a mast Fore and aft sails directly attached to the mast at the luff include gaff rigged quadrilateral and Bermuda triangular sails To a spar Sails attached to a spar include both square sails and such fore and aft quadrilateral sails as lug rigs junk and spritsails and such triangular sails as the lateen and the crab claw To a halyard Spinnakers are the predominant sail supported solely by a halyard High performance yachts including the International C Class Catamaran have used or use rigid wing sails which perform better than traditional soft sails but are more difficult to manage 32 A rigid wing sail was used by Stars and Stripes the defender which won the 1988 America s Cup and by USA 17 the challenger which won the 2010 America s Cup 33 USA 17 s performance during the 2010 America s Cup races demonstrated a velocity made good upwind of over twice the wind speed and downwind of over 2 5 times the wind speed and the ability to sail as close as 20 degrees off the apparent wind 34 Shape Edit Corners and sides of a quadrilateral fore and aft sail Main article Sail components Shape The shape of a sail is defined by its edges and corners in the plane of the sail laid out on a flat surface The edges may be curved either to extend the sail s shape as an airfoil or to define its shape in use In use the sail becomes a curved shape adding the dimension of depth or draft Edges The top of all sails is called the head the leading edge is called the luff on fore and aft sails 35 and on windward leech symmetrical sails the trailing edge is the leech and the bottom edge is the foot The head is attached at the throat and peak to a gaff yard or sprit 36 For a triangular sail the head refers to the topmost corner 35 A fore and aft triangular mainsail achieves a better approximation of a wing form by extending the leech aft beyond the line between the head and clew on an arc called the roach rather than having a triangular shape This added area would flutter in the wind and not contribute to the efficient airfoil shape of the sail without the presence of battens 37 Offshore cruising mainsails sometimes have a hollow leech the inverse of a roach to obviate the need for battens and their ensuing likelihood of chafing the sail 38 The roach on a square sail design is the arc of a circle above a straight line from clew to clew at the foot of a square sail which allows the foot of the sail to clear stays coming up the mast as the sails are rotated from side to side 39 Corners The names of corners of sails vary depending on shape and symmetry In a triangular sail the corner where the luff and the leech connect is called the head 40 35 On a square sail the top corners are head cringles where there are grommets called cringles 41 On a quadrilateral sail the peak is the upper aft corner of the sail at the top end of a gaff or other spar The throat is the upper forward corner of the sail at the bottom end of a gaff or other spar Gaff rigged sails and certain similar rigs employ two halyards to raise the sails the throat halyard raises the forward throat end of the gaff while the peak halyard raises the aft peak end 42 The corner where the leech and foot connect is called the clew on a fore and aft sail On a jib the sheet is connected to the clew on a mainsail the sheet is connected to the boom if present near the clew 35 Clews are the lower two corners of a square sail Square sails have sheets attached to their clews like triangular sails but the sheets are used to pull the sail down to the yard below rather than to adjust the angle it makes with the wind 42 The corner where the leech and the foot connect is called the clew 35 The corner on a fore and aft sail where the luff and foot connect is called the tack 35 and on a mainsail is located where the boom and mast connect 35 In the case of a symmetrical spinnaker each of the lower corners of the sail is a clew However under sail on a given tack the corner to which the spinnaker sheet is attached is called the clew and the corner attached to the spinnaker pole is referred to as the tack 42 43 On a square sail underway the tack is the windward clew and also the line holding down that corner 44 Draft Those triangular sails that are attached to both a mast along the luff and a boom along the foot have depth called draft which results from the luff and foot being curved rather than straight as they are attached to those spars Draft creates a more efficient airfoil shape for the sail Draft can also be induced in triangular staysails by adjustment of the sheets and the angle from which they reach the sails 45 Material Edit Laminated sail with Kevlar and carbon fibers Main articles Sailcloth and Sail components Materials Sail characteristics derive in part from the design construction and the attributes of the fibers which are woven together to make the sail cloth There are several key factors in evaluating a fiber for suitability in weaving a sail cloth initial modulus breaking strength tenacity creep and flex strength Both the initial cost and its durability of the material define its cost effectiveness over time 37 46 Traditionally sails were made from flax or cotton canvas 46 Materials used in sails as of the 21st century include nylon for spinnakers where light weight and elastic resistance to shock load are valued and a range of fibers used for triangular sails that includes Dacron aramid fibers including Kevlar and other liquid crystal polymer fibers including Vectran 46 37 Woven materials like Dacron may specified as either high or low tenacity as indicated in part by their denier count a unit of measure for the linear mass density of fibers 47 Construction Edit Cross cut genoa jib with sail components Legend 1 Main articles Sail components Construction and Sail components Fittings Conventional sails comprise panels which are most often stitched together other times adhered There are two basic configurations cross cut and radial Cross cut sails have the panels sewn parallel to one another often parallel to the foot of the sail and are the least expensive of the two sail constructions Triangular cross cut sail panels are designed to meet the mast and stay at an angle from either the warp or the weft on the bias to allow stretching along the luff but minimize strutting on the luff and foot where the fibers are aligned with the edges of the sail 48 Radial sails have panels that radiate from corners in order to efficiently transmit stress and are typically higher performance than cross cut sails A bi radial sail has panels radiating from two of three corners a tri radial sail has panels radiating from all three corners Mainsails are more likely to be bi radial since there is very little stress at the tack whereas head sails spinnakers and jibs are more likely to be tri radial because they are tensioned at their corners 46 Higher performance sails may be laminated constructed directly from multiple plies of filaments fibers taffetas and films instead of woven textiles and adhered together Molded sails are laminated sails formed over a curved mold and adhered together into a shape that does not lie flat 46 Conventional sail panels are sewn together Sails are tensile structures so the role of a seam is to transmit a tensile load from panel to panel For a sewn textile sail this is done through thread and is limited by the strength of the thread and the strength of the hole in the textile through which it passes Sail seams are often overlapped between panels and sewn with zig zag stitches that create many connections per unit of seam length 46 49 Whereas textiles are typically sewn together other sail materials may be ultrasonically welded a technique whereby high frequency ultrasonic acoustic vibrations are locally applied to workpieces being held together under pressure to create a solid state weld It is commonly used for plastics and especially for joining dissimilar materials 49 Sails feature reinforcements of fabric layers where lines attach at grommets or cringles 41 A bolt rope may be sewn onto the edges of a sail to reinforce it or to fix the sail into a groove in the boom in the mast or in the luff foil of a roller furling jib 39 They may have stiffening features called battens that help shape the sail when full length 50 or just the roach when present 37 They may have a variety of means of reefing them reducing sail area including rows of short lines affixed to the sail to wrap up unused sail as on square and gaff rigs 51 or simply grommets through which a line or a hook may pass as on Bermuda mainsails 52 Fore and aft sails may have tell tales pieces of yarn thread or tape that are affixed to sails to help visualize airflow over their surfaces 37 Running rigging Edit Running rigging on a sailing yacht 1 Main sheet 2 Jib sheet 3 Boom vang 4 Downhaul 5 Jib halyard Square sail edges and corners top Running rigging bottom Main article Running rigging The lines that attach to and control sails are part of the running rigging and differ between square and fore and aft rigs Some rigs shift from one side of the mast to the other e g the dipping lug sail and the lateen The lines can be categorized as those that support the sail those that shape it and those that control its angle to the wind Fore and aft rigged vessels Edit Fore and aft rigged vessels have rigging that supports shapes and adjusts the sails to optimize their performance in the wind which include the following lines Supporting Halyards raise sails and control luff tension Topping lifts hold booms and yards aloft 53 On a gaff sail brails run from the leech to the spar to facilitate furling 54 Shaping Barber haulers adjust a spinnaker jib sheeting angle inboard at right angles to the sheet with a ring or clip on the sheet attached to cordage which is secured and adjusted via fairlead and cam cleat 55 Kicking straps boom vangs control a boom footed sail s leech tension by exerting downward force mid boom 53 Cunninghams tighten the luff of a boom footed sail by pulling downward on a cringle in the luff of a mainsail above the tack 56 Downhauls lower a sail or a yard and can adjust the tension on the luff of a sail 53 Outhauls control the foot tension of a boom footed sail 53 Adjusting angle to the wind Sheets control angle of attack with respect to the apparent wind the amount of leech twist near the head of the sail and the foot tension of loose footed sails 53 A preventer attaches to the end of the boom from a point near the mast to prevent an accidental gybe 53 Guys control spinnaker pole angle with respect to the apparent wind Square rigged vessels Edit Square rigged vessels require more controlling lines than fore and aft rigged ones including the following Supporting Halyards raise and lower the yards 53 Brails run from the leech to the spar to facilitate furling 54 Buntlines serve to raise the foot up for shortening sail or for furling 54 Lifts adjust the tilt of a yard to raise or lower the ends off the horizontal 54 Leechlines run to the leech outer vertical edges of a sail and serve to pull the leech both in and up when furling 54 Shaping Bowlines run from the leech forward towards the bow to control the weather leech keeping it taut and thus preventing it from curling back on itself 54 Clewlines raise the clews to the yard above 54 Adjusting angle to the wind Braces adjust the fore and aft angle of a yard i e to rotate the yard laterally fore and aft around the mast 54 Sheets attach to the clew to control the sail s angle to the wind 54 Tacks haul the clew of a square sail forward 54 Gallery EditSails on high performance sailing craft International Moth on foils Windsurfer Formula 16 catamaran DN class ice boat Land sailing craft Sails on craft subject to low forward resistance and high lateral resistance typically have full length battens 50 See also EditComponentsMarine canvas Sail Class Markings Baggywrinkle ConceptsSail twist RelatedCruising maritime Types of sailsMainsail Mizzen WingsailLegend Edit Genoa jib Head Reinforcement Luff Leech Anti UV covering Head foil attachment Panel s Telltales Reinforcement Tack Leech control Clew Foot control Foot Furling marksReferences Edit Oxford English Dictionary Keegan John 1989 The Price of Admiralty New York Viking p 280 ISBN 0 670 81416 4 Mclaughlan Ian 2014 The Sloop of War 1650 1763 Seaforth Publishing p 288 ISBN 9781848321878 Archived from the original on 2017 11 11 Knight Austin Melvin 1910 Modern seamanship New York D Van Nostrand pp 507 532 Gimbutas Marija 2007 1 The goddesses and gods of Old Europe 6500 3500 BCE myths and cult images New and updated ed Berkeley University of California Press p 18 ISBN 9780520253988 The use of sailing boats is attested from the sixth millenium onwards by their incised depiction on ceramics Carter Robert 2012 19 In Potts D T ed A companion to the archaeology of the ancient Near East Ch 19 Watercraft Chichester West Sussex Wiley Blackwell pp 347 354 ISBN 978 1 4051 8988 0 Archived from the original on 28 April 2015 Retrieved 8 February 2014 John Coleman Darnell 2006 The Wadi of the Horus Qa a A Tableau of Royal Ritual Power in the Theban Western Desert Yale Archived from the original on 2011 02 01 Retrieved 2010 08 24 The sea craft of prehistory p76 by Paul Johnstone Routledge 1980 a b c Meacham Steve 11 December 2008 Austronesians were first to sail the seas The Sydney Morning Herald Retrieved 28 April 2019 a b c Doran Edwin Jr 1974 Outrigger Ages The Journal of the Polynesian Society 83 2 130 140 a b c Mahdi Waruno 1999 The Dispersal of Austronesian boat forms in the Indian Ocean In Blench Roger Spriggs Matthew eds Archaeology and Language III Artefacts languages and texts One World Archaeology 34 Routledge pp 144 179 ISBN 978 0415100540 dead link Lewis David 1994 We the Navigators the ancient art of landfinding in the Pacific 2nd ed Honolulu University of Hawaii Press p 7 ISBN 0 8248 1582 3 Kirch Patrick Vinton 2012 A Shark Going Inland Is My Chief The Island Civilization of Ancient Hawai i University of California Press pp 25 26 ISBN 9780520953833 Gallaher Timothy 2014 The Past and Future of Hala Pandanus tectorius in Hawaii In Keawe Lia O Neill M A MacDowell Marsha Dewhurst C Kurt eds ʻIke Ulana Lau Hala The Vitality and Vibrancy of Lau Hala Weaving Traditions in Hawaiʻi Hawai inuiakea School of Hawaiian Knowledge University of Hawai i Press doi 10 13140 RG 2 1 2571 4648 ISBN 9780824840938 Doran Edwin B 1981 Wangka Austronesian Canoe Origins Texas A amp M University Press ISBN 9780890961070 Beheim B A Bell A V 23 February 2011 Inheritance ecology and the evolution of the canoes of east Oceania Proceedings of the Royal Society B Biological Sciences 278 1721 3089 3095 doi 10 1098 rspb 2011 0060 PMC 3158936 PMID 21345865 Hornell James 1932 Was the Double Outrigger Known in Polynesia and Micronesia A Critical Study The Journal of the Polynesian Society 41 2 162 131 143 a b Shaffer Lynda Norene 1996 Maritime Southeast Asia to 1500 M E Sharpe a b Hourani George Fadlo 1951 Arab Seafaring in the Indian Ocean in Ancient and Early Medieval Times New Jersey Princeton University Press a b Johnstone Paul 1980 The Seacraft of Prehistory Cambridge Harvard University Press ISBN 978 0674795952 L Pham Charlotte Minh Ha 2012 Asian Shipbuilding Technology Bangkok UNESCO Bangkok Asia and Pacific Regional Bureau for Education p 20 ISBN 978 92 9223 413 3 Maguin Pierre Yves September 1980 The Southeast Asian Ship An Historical Approach Journal of Southeast Asian Studies 11 2 266 276 doi 10 1017 S002246340000446X JSTOR 20070359 I C Campbell The Lateen Sail in World History Archived 2016 08 04 at the Wayback Machine Journal of World History University of Hawaii 6 1 Spring 1995 p 1 23 Marchaj Czeslaw A Sail Performance Techniques to Maximize Sail Power Revised Edition London Adlard Coles Nautical 2003 Part 2 Aerodynamics of sails Chapter 11 The Sail Power of Various Rigs Chatterton Edward Keble 1912 Fore and aft London J B Lippincott p 203 OCLC 651733391 fore and aft rig schooner Castro F Fonseca N Vacas T Ciciliot F 2008 A Quantitative Look at Mediterranean Lateen and Square Rigged Ships Part 1 The International Journal of Nautical Archaeology 37 2 pp 347 359 doi 10 1111 j 1095 9270 2008 00183 x Clancy L J 1975 Aerodynamics London Pitman Publishing Limited p 638 ISBN 0 273 01120 0 Jobson Gary 1990 Championship Tactics How Anyone Can Sail Faster Smarter and Win Races New York St Martin s Press pp 323 ISBN 0 312 04278 7 Bethwaite Frank 2007 High Performance Sailing Adlard Coles Nautical ISBN 978 0 7136 6704 2 Clerc Rampal G 1913 Mer la Mer Dans la Nature la Mer et l Homme Paris Librairie Larousse p 213 Folkard Henry Coleman 2012 Sailing Boats from Around the World The Classic 1906 Treatise Dover Maritime Courier Corporation p 576 ISBN 9780486311340 Archived from the original on 2017 11 11 Nielsen Peter May 14 2014 Have Wingsails Gone Mainstream Sail Archived from the original on April 12 2015 Retrieved 2015 01 24 America s cup BMW Oracle Racing pushes edge in 90 foot trimaran International Herald Tribune 2008 11 08 Archived from the original on 2008 12 11 Retrieved 2009 03 07 Swintal Diane 13 August 2009 Russell Coutts Talks About BMW Oracle s Giant Multi hull cupinfo com Archived from the original on 17 February 2012 Retrieved 2012 04 25 a b c d e f g SAIL Editors Know How Sailing 101 Sail Magazine Archived from the original on 5 October 2016 Retrieved 4 October 2016 King Hattendorf amp Estes 2000 p 283 a b c d e Textor Ken 1995 The New Book of Sail Trim Sheridan House Inc p 228 ISBN 0924486813 Archived from the original on 2016 05 17 Nicolson Ian 1998 A Sail for All Seasons Cruising and Racing Sail Tips Sheridan House Inc p 124 ISBN 9781574090475 Archived from the original on 2017 11 11 a b Kipping Robert 1847 The Elements of Sailmaking Being a Complete Treatise on Cutting out Sails According to the Most Approved Methods in the Merchant Service F W Norie amp Wilson pp 58 72 Jobson Gary 2008 Sailing Fundamentals Revised ed New York Simon and Schuster p 224 ISBN 978 1439136782 Archived from the original on 2017 11 11 a b Knight Austin N 1921 Modern Seamanship 8 ed New York D van Nostrand Company pp 831 head cringle a b c King Dean Hattendorf John B Estes J W 2000 A sea of words a lexicon and companion for Patrick O Brian s seafaring tales 3 ed New York Henry Holt p 518 ISBN 978 0 8050 6615 9 Archived from the original on 2017 11 11 Sailing Quick Reference Guide PDF Wayzata Yacht Club Wayzata Yacht Club Archived PDF from the original on 5 January 2017 Retrieved 4 October 2016 King Hattendorf amp Estes 2000 p 416 Jinks Simon Adjusting Sail Draft Royal Yachting Association Royal Yachting Association Archived from the original on 5 October 2016 Retrieved 4 October 2016 a b c d e f Hancock Brian Knox Johnson Robin 2003 Maximum Sail Power The Complete Guide to Sails Sail Technology and Performance Nomad Press pp 288 ISBN 9781619304277 sail panel cut Rice Carol January 1995 A first time buyers checklist Cruising World 21 pp 34 35 ISSN 0098 3519 archived from the original on 2017 11 11 retrieved 2017 01 13 Colgate Stephen 1996 Fundamentals of Sailing Cruising and Racing W W Norton amp Company p 384 ISBN 9780393038118 Archived from the original on 2017 11 11 a b Jones I Stylios G K 2013 Joining Textiles Principles and Applications Woodhead Publishing Series in Textiles Elsevier p 624 ISBN 9780857093967 retrieved 2017 01 12 a b Berman Phil 1999 Catamaran Sailing From Start to Finish W W Norton amp Company pp 219 ISBN 9780393318807 Catamaran batten Cunliffe Tom 2004 Hand Reef and Steer Sheridan House Inc p 178 ISBN 9781574092035 Archived from the original on 2017 11 11 Hahne Peter 2005 Sail Trim Theory and Practice Sheridan House Inc p 120 ISBN 9781574091984 a b c d e f g Howard Jim Doane Charles J 2000 Handbook of Offshore Cruising The Dream and Reality of Modern Ocean Cruising Sheridan House Inc p 468 ISBN 9781574090932 a b c d e f g h i j Biddlecombe George 1990 The Art of Rigging Containing an Explanation of Terms and Phrases and the Progressive Method of Rigging Expressly Adapted for Sailing Ships Dover Maritime Series Courier Corporation pp 155 ISBN 9780486263434 The Art of Rigging Containing an Explanation of Terms and Phrases and the By George Biddlecombe Schweer Peter 2006 How to Trim Sails Sailmate Sheridan House Inc p 105 ISBN 9781574092202 Holmes Rupert Evans Jeremy 2014 The Dinghy Bible The Complete Guide for Novices and Experts A amp C Black p 192 ISBN 9781408188002 Further reading EditChapman Piloting amp Seamanship Maloney Elbert S Chapman Charles F Charles Frederic 1881 1976 65th ed New York Hearst Books 2006 ISBN 1 58816 232 X OCLC 71291743 CS1 maint others link Crothers William L 2014 The Masting of American Merchant Sail in the 1850s An Illustrated Study Jefferson North Carolina McFarland Publishing ISBN 9780786493999 Hancock Brian 2003 Maximum Sail Power the Complete Guide to Sails Sail Technology and Performance PDF New York Nomad Press ISBN 978 1 61930 427 7 OCLC 913696173 The Sailor s Handbook The Essential Sailing Manual Herreshoff Halsey C Place of publication not identified International Marine 2006 ISBN 978 0 07 148092 5 OCLC 76941837 CS1 maint others link Jobson Gary 8 September 2008 Sailing Fundamentals The Official Learn to Sail Manual of the American Sailing Association and the United States Coast Guard Auxiliary Betz Marti American Sailing Association United States Coast Guard Auxiliary Revised and updatedition ed New York ISBN 978 1 4391 3678 2 OCLC 892057802 Marchaj C A Czesaw Antony 1918 2003 Sail Performance Techniques to Maximise Sail Power Rev ed London Adlard Coles Nautical ISBN 0 7136 6407 X OCLC 50841634 CS1 maint multiple names authors list link Marino Emiliano 2001 The Sailmaker s Apprentice A Guide for the Self Reliant Sailor Camden Me International Marine ISBN 0 07 137642 9 OCLC 48258636 Rousmaniere John 7 January 2014 The Annapolis Book of Seamanship Smith Mark Mark E Fourth ed New York ISBN 978 1 4516 5019 8 OCLC 862092350 Seidman David 2011 The Complete Sailor Learning the Art of Sailing 2nd ed Camden Me International Marine McGraw Hill ISBN 978 0 07 174957 2 OCLC 704984188 External links EditWikimedia Commons has media related to sails Look up sail in Wiktionary the free dictionary Sailboats database sailing yacht specifications worldwide Sail Design Software The quest for the perfect sailshape FABRIC Sail Design Software Laminated Sails Doyle Stratis Sail The New Student s Reference Work 1914 Retrieved from https en wikipedia org w index php title Sail amp oldid 1053238723, wikipedia, wiki, book,

books

, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.