fbpx
Wikipedia

Sol–gel process

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network (or gel) of either discrete particles or network polymers. Typical precursors are metal alkoxides.

Contents

Schematic representation of the different stages and routes of the sol–gel technology

In this chemical procedure, a "sol" (a colloidal solution) is formed that then gradually evolves towards the formation of a gel-like diphasic system containing both a liquid phase and solid phase whose morphologies range from discrete particles to continuous polymer networks. In the case of the colloid, the volume fraction of particles (or particle density) may be so low that a significant amount of fluid may need to be removed initially for the gel-like properties to be recognized. This can be accomplished in any number of ways. The simplest method is to allow time for sedimentation to occur, and then pour off the remaining liquid. Centrifugation can also be used to accelerate the process of phase separation.

Removal of the remaining liquid (solvent) phase requires a drying process, which is typically accompanied by a significant amount of shrinkage and densification. The rate at which the solvent can be removed is ultimately determined by the distribution of porosity in the gel. The ultimate microstructure of the final component will clearly be strongly influenced by changes imposed upon the structural template during this phase of processing.

Afterwards, a thermal treatment, or firing process, is often necessary in order to favor further polycondensation and enhance mechanical properties and structural stability via final sintering, densification, and grain growth. One of the distinct advantages of using this methodology as opposed to the more traditional processing techniques is that densification is often achieved at a much lower temperature.

The precursor sol can be either deposited on a substrate to form a film (e.g., by dip-coating or spin coating), cast into a suitable container with the desired shape (e.g., to obtain monolithic ceramics, glasses, fibers, membranes, aerogels), or used to synthesize powders (e.g., microspheres, nanospheres). The sol–gel approach is a cheap and low-temperature technique that allows the fine control of the product's chemical composition. Even small quantities of dopants, such as organic dyes and rare-earth elements, can be introduced in the sol and end up uniformly dispersed in the final product. It can be used in ceramics processing and manufacturing as an investment casting material, or as a means of producing very thin films of metal oxides for various purposes. Sol–gel derived materials have diverse applications in optics, electronics, energy, space, (bio)sensors, medicine (e.g., controlled drug release), reactive material, and separation (e.g., chromatography) technology.

The interest in sol–gel processing can be traced back in the mid-1800s with the observation that the hydrolysis of tetraethyl orthosilicate (TEOS) under acidic conditions led to the formation of SiO2 in the form of fibers and monoliths. Sol–gel research grew to be so important that in the 1990s more than 35,000 papers were published worldwide on the process.

The sol–gel process is a wet-chemical technique used for the fabrication of both glassy and ceramic materials. In this process, the sol (or solution) evolves gradually towards the formation of a gel-like network containing both a liquid phase and a solid phase. Typical precursors are metal alkoxides and metal chlorides, which undergo hydrolysis and polycondensation reactions to form a colloid. The basic structure or morphology of the solid phase can range anywhere from discrete colloidal particles to continuous chain-like polymer networks.

The term colloid is used primarily to describe a broad range of solid-liquid (and/or liquid-liquid) mixtures, all of which contain distinct solid (and/or liquid) particles which are dispersed to various degrees in a liquid medium. The term is specific to the size of the individual particles, which are larger than atomic dimensions but small enough to exhibit Brownian motion. If the particles are large enough, then their dynamic behavior in any given period of time in suspension would be governed by forces of gravity and sedimentation. But if they are small enough to be colloids, then their irregular motion in suspension can be attributed to the collective bombardment of a myriad of thermally agitated molecules in the liquid suspending medium, as described originally by Albert Einstein in his dissertation. Einstein concluded that this erratic behavior could adequately be described using the theory of Brownian motion, with sedimentation being a possible long-term result. This critical size range (or particle diameter) typically ranges from tens of angstroms (10−10 m) to a few micrometres (10−6 m).

  • Under certain chemical conditions (typically in base-catalyzed sols), the particles may grow to sufficient size to become colloids, which are affected both by sedimentation and forces of gravity. Stabilized suspensions of such sub-micrometre spherical particles may eventually result in their self-assembly—yielding highly ordered microstructures reminiscent of the prototype colloidal crystal: precious opal.
  • Under certain chemical conditions (typically in acid-catalyzed sols), the interparticle forces have sufficient strength to cause considerable aggregation and/or flocculation prior to their growth. The formation of a more open continuous network of low density polymers exhibits certain advantages with regard to physical properties in the formation of high performance glass and glass/ceramic components in 2 and 3 dimensions.

In either case (discrete particles or continuous polymer network) the sol evolves then towards the formation of an inorganic network containing a liquid phase (gel). Formation of a metal oxide involves connecting the metal centers with oxo (M-O-M) or hydroxo (M-OH-M) bridges, therefore generating metal-oxo or metal-hydroxo polymers in solution.

In both cases (discrete particles or continuous polymer network), the drying process serves to remove the liquid phase from the gel, yielding a micro-porous amorphous glass or micro-crystalline ceramic. Subsequent thermal treatment (firing) may be performed in order to favor further polycondensation and enhance mechanical properties.

With the viscosity of a sol adjusted into a proper range, both optical quality glass fiber and refractory ceramic fiber can be drawn which are used for fiber optic sensors and thermal insulation, respectively. In addition, uniform ceramic powders of a wide range of chemical composition can be formed by precipitation.

Simplified representation of the condensation induced by hydrolysis of TEOS.

The Stöber process is a well-studied example of polymerization of an alkoxide, specifically TEOS. The chemical formula for TEOS is given by Si(OC2H5)4, or Si(OR)4, where the alkyl group R = C2H5. Alkoxides are ideal chemical precursors for sol–gel synthesis because they react readily with water. The reaction is called hydrolysis, because a hydroxyl ion becomes attached to the silicon atom as follows:

Si(OR)4 + H2O → HO−Si(OR)3 + R−OH

Depending on the amount of water and catalyst present, hydrolysis may proceed to completion to silica:

Si(OR)4 + 2 H2O → SiO2 + 4 R−OH

Complete hydrolysis often requires an excess of water and/or the use of a hydrolysis catalyst such as acetic acid or hydrochloric acid. Intermediate species including [(OR)2−Si−(OH)2] or [(OR)3−Si−(OH)] may result as products of partial hydrolysis reactions. Early intermediates result from two partially hydrolyzed monomers linked with a siloxane [Si−O−Si] bond:

(OR)3−Si−OH + HO−Si−(OR)3 → [(OR)3Si−O−Si(OR)3] + H−O−H

or

(OR)3−Si−OR + HO−Si−(OR)3 → [(OR)3Si−O−Si(OR)3] + R−OH

Thus, polymerization is associated with the formation of a 1-, 2-, or 3-dimensional network of siloxane [Si−O−Si] bonds accompanied by the production of H−O−H and R−O−H species.

By definition, condensation liberates a small molecule, such as water or alcohol. This type of reaction can continue to build larger and larger silicon-containing molecules by the process of polymerization. Thus, a polymer is a huge molecule (or macromolecule) formed from hundreds or thousands of units called monomers. The number of bonds that a monomer can form is called its functionality. Polymerization of silicon alkoxide, for instance, can lead to complex branching of the polymer, because a fully hydrolyzed monomer Si(OH)4 is tetrafunctional (can branch or bond in 4 different directions). Alternatively, under certain conditions (e.g., low water concentration) fewer than 4 of the OR or OH groups (ligands) will be capable of condensation, so relatively little branching will occur. The mechanisms of hydrolysis and condensation, and the factors that bias the structure toward linear or branched structures are the most critical issues of sol–gel science and technology. This reaction is favored in both basic and acidic conditions.

Sonication is an efficient tool for the synthesis of polymers. The cavitational shear forces, which stretch out and break the chain in a non-random process, result in a lowering of the molecular weight and poly-dispersity. Furthermore, multi-phase systems are very efficient dispersed and emulsified, so that very fine mixtures are provided. This means that ultrasound increases the rate of polymerisation over conventional stirring and results in higher molecular weights with lower polydispersities. Ormosils (organically modified silicate) are obtained when silane is added to gel-derived silica during sol–gel process. The product is a molecular-scale composite with improved mechanical properties. Sono-Ormosils are characterized by a higher density than classic gels as well as an improved thermal stability. An explanation therefore might be the increased degree of polymerization.

For single cation systems like SiO2 and TiO2, hydrolysis and condensation processes naturally give rise to homogenous compositions. For systems involving multiple cations, such as strontium titanate, SrTiO3 and other perovskite systems, the concept of steric immobilisation becomes relevant. To avoid the formation of multiple phases of binary oxides as the result of differing hydrolysis and condensation rates, the entrapment of cations in a polymer network is an effective approach, generally termed the Pechini Process. In this process, a chelating agent is used, most often citric acid, to surround aqueous cations and sterically entrap them. Subsequently, a polymer network is formed to immobilize the chelated cations in a gel or resin. This is most often achieved by poly-esterification using ethylene glycol. The resulting polymer is then combusted under oxidising conditions to remove organic content and yield a product oxide with homogeneously dispersed cations.

Nanostructure of a resorcinol-formaldehyde gel reconstructed from small-angle X-ray scattering. This type of disordered morphology is typical of many sol–gel materials.

In the processing of fine ceramics, the irregular particle sizes and shapes in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact. Uncontrolled flocculation of powders due to attractive van der Waals forces can also give rise to microstructural heterogeneities.

Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the distribution of porosity. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to crack propagation in the unfired body if not relieved.

In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the sintering process, yielding heterogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from heterogeneous densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.

It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over particle-particle interactions. Monodisperse colloids provide this potential.

Monodisperse powders of colloidal silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the colloidal crystal or polycrystalline colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline structures would appear to be the basic elements of nanoscale materials science, and, therefore, provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in inorganic systems such as sintered ceramic nanomaterials.

The applications for sol gel-derived products are numerous. For example, scientists have used it to produce the world's lightest materials and also some of its toughest ceramics.

Protective coatings

One of the largest application areas is thin films, which can be produced on a piece of substrate by spin coating or dip-coating. Protective and decorative coatings, and electro-optic components can be applied to glass, metal and other types of substrates with these methods. Cast into a mold, and with further drying and heat-treatment, dense ceramic or glass articles with novel properties can be formed that cannot be created by any other method. Other coating methods include spraying, electrophoresis, inkjet printing, or roll coating.

Thin films and fibers

With the viscosity of a sol adjusted into a proper range, both optical and refractory ceramic fibers can be drawn which are used for fiber optic sensors and thermal insulation, respectively. Thus, many ceramic materials, both glassy and crystalline, have found use in various forms from bulk solid-state components to high surface area forms such as thin films, coatings and fibers. Also, thin films have found their application in the electronic field and can be used as sensitive components of a resistive gas sensors.

Nanoscale powders

Ultra-fine and uniform ceramic powders can be formed by precipitation. These powders of single and multiple component compositions can be produced on a nanoscale particle size for dental and biomedical applications. Composite powders have been patented for use as agrochemicals and herbicides. Powder abrasives, used in a variety of finishing operations, are made using a sol–gel type process. One of the more important applications of sol–gel processing is to carry out zeolite synthesis. Other elements (metals, metal oxides) can be easily incorporated into the final product and the silicate sol formed by this method is very stable.

Biomedical

Another application in research is to entrap biomolecules for sensory (biosensors) or catalytic purposes, by physically or chemically preventing them from leaching out and, in the case of protein or chemically-linked small molecules, by shielding them from the external environment yet allowing small molecules to be monitored. The major disadvantages are that the change in local environment may alter the functionality of the protein or small molecule entrapped and that the synthesis step may damage the protein. To circumvent this, various strategies have been explored, such as monomers with protein friendly leaving groups (e.g. glycerol) and the inclusion of polymers which stabilize protein (e.g. PEG).

Other products fabricated with this process include various ceramic membranes for microfiltration, ultrafiltration, nanofiltration, pervaporation, and reverse osmosis. If the liquid in a wet gel is removed under a supercritical condition, a highly porous and extremely low density material called aerogel is obtained. Drying the gel by means of low temperature treatments (25-100 °C), it is possible to obtain porous solid matrices called xerogels. In addition, a sol–gel process was developed in the 1950s for the production of radioactive powders of UO2 and ThO2 for nuclear fuels, without generation of large quantities of dust.

Opto-mechanical

Macroscopic optical elements and active optical components as well as large area hot mirrors, cold mirrors, lenses, and beam splitters all with optimal geometry can be made quickly and at low cost via the sol–gel route. In the processing of high performance ceramic nanomaterials with superior opto-mechanical properties under adverse conditions, the size of the crystalline grains is determined largely by the size of the crystalline particles present in the raw material during the synthesis or formation of the object. Thus a reduction of the original particle size well below the wavelength of visible light (~500 nm) eliminates much of the light scattering, resulting in a translucent or even transparent material.

Furthermore, results indicate that microscopic pores in sintered ceramic nanomaterials, mainly trapped at the junctions of microcrystalline grains, cause light to scatter and prevented true transparency. it has been observed that the total volume fraction of these nanoscale pores (both intergranular and intragranular porosity) must be less than 1% for high-quality optical transmission. I.E. The density has to be 99.99% of the theoretical crystalline density.

Medicine

Unique properties of the sol–gel provide the possibility of their use for a variety of medical applications. A sol–gel processed alumina can be used as a carrier for the sustained delivery of drugs and as an established wound healer. A marked decrease in scar size was observed because of the wound healing composite including sol–gel processed alumina. A novel approach to thrombolysis treatment is possible by developing a new family of injectable composites: plasminogen activator entrapped within alumina.

  1. Hanaor, D. A. H.; Chironi, I.; Karatchevtseva, I.; Triani, G.; Sorrell, C. C. (2012). "Single and Mixed Phase TiO2 Powders Prepared by Excess Hydrolysis of Titanium Alkoxide". Advances in Applied Ceramics. 111 (3): 149–158. arXiv:1410.8255. doi:10.1179/1743676111Y.0000000059.
  2. Brinker, C. J.; G. W. Scherer (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press. ISBN 978-0-12-134970-7.
  3. Hench, L. L.; J. K. West (1990). "The Sol-Gel Process". Chemical Reviews. 90: 33–72. doi:10.1021/cr00099a003.
  4. Klein, L. (1994). Sol-Gel Optics: Processing and Applications. Springer Verlag. ISBN 978-0-7923-9424-2.
  5. Klein, L.C. and Garvey, G.J., "Kinetics of the Sol-Gel Transition" Journal of Non-Crystalline Solids, Vol. 38, p.45 (1980)
  6. Brinker, C.J., et al., "Sol-Gel Transition in Simple Silicates", J. Non-Crystalline Solids, Vol.48, p.47 (1982)
  7. Einstein, A., Ann. Phys., Vol. 19, p. 289 (1906), Vol. 34 p.591 (1911)
  8. Allman III, R.M., Structural Variations in Colloidal Crystals, M.S. Thesis, UCLA (1983)
  9. Allman III, R.M. and Onoda, G.Y., Jr. (Unpublished work, IBM T.J. Watson Research Center, 1984)
  10. Sakka, S. et al., "The Sol-Gel Transition: Formation of Glass Fibers & Thin Films", J. Non-Crystalline Solids, Vol. 48, p.31 (1982)
  11. Rosa-Fox, N. de la; Pinero, M.; Esquivias, L. (2002): Organic-Inorganic Hybrid Materials from Sonogels. 2002.
  12. Nishio, Keishi; Tsuchiya, Tsuchiya (2004-12-17). "Chapter 3 Sol–Gel Processing of Thin Films with Metal Salts". In Sakka, JSumio (ed.). Handbook of Sol-Gel Science and Technology, Processing Characterisation and Applications. Kluwer Academic. pp. 59–66. ISBN 9781402079696.
  13. Chen, W.; et al. (2018). "Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol–Gel versus Pechini Syntheses"(PDF). Inorganic Chemistry. 57 (12): 7279–7289. doi:10.1021/acs.inorgchem.8b00926. PMID 29863346.
  14. Gommes, C. J., Roberts A. (2008) Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Physical Review E, 77, 041409.
  15. Onoda, G. Y. and Hench, L. L., Ceramic Processing Before Firing (Wiley & Sons, New York, 1979).
  16. Aksay, I. A., Lange, F. F., Davis, B. I.; Lange; Davis (1983). "Uniformity of Al2O3-ZrO2 Composites by Colloidal Filtration". J. Am. Ceram. Soc. 66 (10): C–190. doi:10.1111/j.1151-2916.1983.tb10550.x.CS1 maint: multiple names: authors list (link)
  17. Franks, G. V. & Lange, F. F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts". J. Am. Ceram. Soc. 79 (12): 3161–3168. doi:10.1111/j.1151-2916.1996.tb08091.x.
  18. Evans, A. G. & Davidge, R. W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide". Phil. Mag. 20 (164): 373–388. Bibcode:1969PMag...20..373E. doi:10.1080/14786436908228708.
  19. Evans, A. G.; Davidge, R. W. (1970). "Strength and fracture of fully dense polycrystalline magnesium oxide". Journal of Materials Science. 5 (4): 314–325. Bibcode:1970JMatS...5..314E. doi:10.1007/BF02397783. S2CID 137539240.
  20. Evans, A. G.; Davidge, R. W. (1970). "The strength and oxidation of reaction-sintered silicon nitride". J. Mater. Sci. 5 (4): 314–325. Bibcode:1970JMatS...5..314E. doi:10.1007/BF02397783. S2CID 137539240.
  21. Lange, F. F. & Metcalf, M. (1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering". J. Am. Ceram. Soc. 66 (6): 398–406. doi:10.1111/j.1151-2916.1983.tb10069.x.
  22. Evans, A. G. (1987). "Considerations of Inhomogeneity Effects in Sintering". Journal of the American Ceramic Society. 65 (10): 497–501. doi:10.1111/j.1151-2916.1982.tb10340.x.
  23. Allman III, R. M. in Microstructural Control Through Colloidal Consolidation, Aksay, I. A., Adv. Ceram., Vol. 9, p. 94, Proc. Amer. Ceramic Soc. (Columbus, OH 1984).
  24. Whitesides, G. M.; et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures". Science. 254 (5036): 1312–9. Bibcode:1991Sci...254.1312W. doi:10.1126/science.1962191. PMID 1962191.
  25. Dubbs D. M, Aksay I. A.; Aksay (2000). "Self-Assembled Ceramics". Annu. Rev. Phys. Chem. 51: 601–22. Bibcode:2000ARPC...51..601D. doi:10.1146/annurev.physchem.51.1.601. PMID 11031294.
  26. Wright, J. D. and Sommerdijk, N. A. J. M., Sol-Gel Materials: Chemistry and Applications.
  27. Aegerter, M. A. and Mennig, M., Sol-Gel Technologies for Glass Producers and Users.
  28. Phalippou, J., Sol-Gel: A Low temperature Process for the Materials of the New Millennium, solgel.com (2000).
  29. Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (Academic Press, 1990) ISBN 9780121349707.
  30. German Patent 736411 (Granted 6 May 1943) Anti-Reflective Coating (W. Geffcken and E. Berger, Jenaer Glasswerk Schott).
  31. Klein, L. C., Sol-Gel Optics: Processing and Applications, Springer Verlag (1994).
  32. Yakovlev, Aleksandr V. (22 March 2016). "Inkjet Color Printing by Interference Nanostructures". ACS Nano. 10 (3): 3078–3086. doi:10.1021/acsnano.5b06074. PMID 26805775.
  33. Yakovlev, Aleksandr V. (December 2015). "Sol-Gel Assisted Inkjet Hologram Patterning". Advanced Functional Materials. 25 (47): 7375–7380. doi:10.1002/adfm.201503483.
  34. Patel, P.J., et al., (2000) "Transparent ceramics for armor and EM window applications", Proc. SPIE, Vol. 4102, p. 1, Inorganic Optical Materials II, Marker, A.J. and Arthurs, E.G., Eds.
  35. Gorobtsov, Philipp Yu.; Fisenko, Nikita A.; Solovey, Valentin R.; Simonenko, Nikolay P.; Simonenko, Elizaveta P.; Volkov, Ivan A.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (July 2021). "Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films". Colloid and Interface Science Communications. 43: 100452. doi:10.1016/j.colcom.2021.100452.
  36. Mokrushin, Artem S.; Fisenko, Nikita A.; Gorobtsov, Philipp Yu; Simonenko, Tatiana L.; Glumov, Oleg V.; Melnikova, Natalia A.; Simonenko, Nikolay P.; Bukunov, Kirill A.; Simonenko, Elizaveta P.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (January 2021). "Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor". Talanta. 221: 121455. doi:10.1016/j.talanta.2020.121455.
  37. Gupta R, Chaudhury NK; Chaudhury (2007). "Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects". Biosens Bioelectron. 22 (11): 2387–99. doi:10.1016/j.bios.2006.12.025. PMID 17291744.
  38. Yoldas, B. E. (1979). "Monolithic glass formation by chemical polymerization". Journal of Materials Science. 14 (8): 1843–1849. Bibcode:1979JMatS..14.1843Y. doi:10.1007/BF00551023.
  39. Prochazka, S.; Klug, F. J. (1983). "Infrared-Transparent Mullite Ceramic". Journal of the American Ceramic Society. 66 (12): 874–880. doi:10.1111/j.1151-2916.1983.tb11004.x.
  40. Volodina, K. (2014). "A synergistic biocomposite for wound healing and decreasing scar size based on sol–gel alumina". RSC Advances. 4 (105): 60445–60450. doi:10.1039/C4RA09015B.
  41. Vinogradov, Vasiliy V.; Vinogradov, Alexander V.; Sobolev, Vladimir E.; Dudanov, Ivan P.; Vinogradov, Vladimir V. (25 December 2014). "Plasminogen activator entrapped within injectable alumina: a novel approach to thrombolysis treatment". Journal of Sol-Gel Science and Technology. 73 (2): 501–505. doi:10.1007/s10971-014-3601-4.
  42. Vinogradov, Vladimir V.; Avnir, David (2 January 2015). "Exceptional thermal stability of industrially-important enzymes by entrapment within nano-boehmite derived alumina". RSC Adv. 5 (15): 10862–10868. doi:10.1039/C4RA10944A.
  • Colloidal Dispersions, Russel, W. B., et al., Eds., Cambridge University Press (1989)
  • Glasses and the Vitreous State, Zarzycki. J., Cambridge University Press, 1991
  • The Sol to Gel Transition. Plinio Innocenzi. Springer Briefs in Materials. Springer. 2016.

Sol–gel process
Sol gel process Language Watch Edit 160 160 Redirected from Sol gel In materials science the sol gel process is a method for producing solid materials from small molecules The method is used for the fabrication of metal oxides especially the oxides of silicon Si and titanium Ti The process involves conversion of monomers into a colloidal solution sol that acts as the precursor for an integrated network or gel of either discrete particles or network polymers Typical precursors are metal alkoxides Contents 1 Stages 2 Particles and polymers 3 Polymerization 4 Sono Ormosil 5 Pechini process 6 Nanomaterials 7 Applications 7 1 Protective coatings 7 2 Thin films and fibers 7 3 Nanoscale powders 7 4 Biomedical 7 5 Opto mechanical 7 6 Medicine 8 See also 9 References 10 Further reading 11 External linksStages Edit Schematic representation of the different stages and routes of the sol gel technology In this chemical procedure a sol a colloidal solution is formed that then gradually evolves towards the formation of a gel like diphasic system containing both a liquid phase and solid phase whose morphologies range from discrete particles to continuous polymer networks In the case of the colloid the volume fraction of particles or particle density may be so low that a significant amount of fluid may need to be removed initially for the gel like properties to be recognized This can be accomplished in any number of ways The simplest method is to allow time for sedimentation to occur and then pour off the remaining liquid Centrifugation can also be used to accelerate the process of phase separation Removal of the remaining liquid solvent phase requires a drying process which is typically accompanied by a significant amount of shrinkage and densification The rate at which the solvent can be removed is ultimately determined by the distribution of porosity in the gel The ultimate microstructure of the final component will clearly be strongly influenced by changes imposed upon the structural template during this phase of processing Afterwards a thermal treatment or firing process is often necessary in order to favor further polycondensation and enhance mechanical properties and structural stability via final sintering densification and grain growth One of the distinct advantages of using this methodology as opposed to the more traditional processing techniques is that densification is often achieved at a much lower temperature The precursor sol can be either deposited on a substrate to form a film e g by dip coating or spin coating cast into a suitable container with the desired shape e g to obtain monolithic ceramics glasses fibers membranes aerogels or used to synthesize powders e g microspheres nanospheres 1 The sol gel approach is a cheap and low temperature technique that allows the fine control of the product s chemical composition Even small quantities of dopants such as organic dyes and rare earth elements can be introduced in the sol and end up uniformly dispersed in the final product It can be used in ceramics processing and manufacturing as an investment casting material or as a means of producing very thin films of metal oxides for various purposes Sol gel derived materials have diverse applications in optics electronics energy space bio sensors medicine e g controlled drug release reactive material and separation e g chromatography technology The interest in sol gel processing can be traced back in the mid 1800s with the observation that the hydrolysis of tetraethyl orthosilicate TEOS under acidic conditions led to the formation of SiO2 in the form of fibers and monoliths Sol gel research grew to be so important that in the 1990s more than 35 000 papers were published worldwide on the process 2 3 4 Particles and polymers EditThe sol gel process is a wet chemical technique used for the fabrication of both glassy and ceramic materials In this process the sol or solution evolves gradually towards the formation of a gel like network containing both a liquid phase and a solid phase Typical precursors are metal alkoxides and metal chlorides which undergo hydrolysis and polycondensation reactions to form a colloid The basic structure or morphology of the solid phase can range anywhere from discrete colloidal particles to continuous chain like polymer networks 5 6 The term colloid is used primarily to describe a broad range of solid liquid and or liquid liquid mixtures all of which contain distinct solid and or liquid particles which are dispersed to various degrees in a liquid medium The term is specific to the size of the individual particles which are larger than atomic dimensions but small enough to exhibit Brownian motion If the particles are large enough then their dynamic behavior in any given period of time in suspension would be governed by forces of gravity and sedimentation But if they are small enough to be colloids then their irregular motion in suspension can be attributed to the collective bombardment of a myriad of thermally agitated molecules in the liquid suspending medium as described originally by Albert Einstein in his dissertation Einstein concluded that this erratic behavior could adequately be described using the theory of Brownian motion with sedimentation being a possible long term result This critical size range or particle diameter typically ranges from tens of angstroms 10 10 m to a few micrometres 10 6 m 7 Under certain chemical conditions typically in base catalyzed sols the particles may grow to sufficient size to become colloids which are affected both by sedimentation and forces of gravity Stabilized suspensions of such sub micrometre spherical particles may eventually result in their self assembly yielding highly ordered microstructures reminiscent of the prototype colloidal crystal precious opal 8 9 Under certain chemical conditions typically in acid catalyzed sols the interparticle forces have sufficient strength to cause considerable aggregation and or flocculation prior to their growth The formation of a more open continuous network of low density polymers exhibits certain advantages with regard to physical properties in the formation of high performance glass and glass ceramic components in 2 and 3 dimensions 10 In either case discrete particles or continuous polymer network the sol evolves then towards the formation of an inorganic network containing a liquid phase gel Formation of a metal oxide involves connecting the metal centers with oxo M O M or hydroxo M OH M bridges therefore generating metal oxo or metal hydroxo polymers in solution In both cases discrete particles or continuous polymer network the drying process serves to remove the liquid phase from the gel yielding a micro porous amorphous glass or micro crystalline ceramic Subsequent thermal treatment firing may be performed in order to favor further polycondensation and enhance mechanical properties With the viscosity of a sol adjusted into a proper range both optical quality glass fiber and refractory ceramic fiber can be drawn which are used for fiber optic sensors and thermal insulation respectively In addition uniform ceramic powders of a wide range of chemical composition can be formed by precipitation Polymerization Edit Simplified representation of the condensation induced by hydrolysis of TEOS The Stober process is a well studied example of polymerization of an alkoxide specifically TEOS The chemical formula for TEOS is given by Si OC2H5 4 or Si OR 4 where the alkyl group R C2H5 Alkoxides are ideal chemical precursors for sol gel synthesis because they react readily with water The reaction is called hydrolysis because a hydroxyl ion becomes attached to the silicon atom as follows Si OR 4 H2O HO Si OR 3 R OH Depending on the amount of water and catalyst present hydrolysis may proceed to completion to silica Si OR 4 2 H2O SiO2 4 R OH Complete hydrolysis often requires an excess of water and or the use of a hydrolysis catalyst such as acetic acid or hydrochloric acid Intermediate species including OR 2 Si OH 2 or OR 3 Si OH may result as products of partial hydrolysis reactions 1 Early intermediates result from two partially hydrolyzed monomers linked with a siloxane Si O Si bond OR 3 Si OH HO Si OR 3 OR 3Si O Si OR 3 H O H or OR 3 Si OR HO Si OR 3 OR 3Si O Si OR 3 R OH Thus polymerization is associated with the formation of a 1 2 or 3 dimensional network of siloxane Si O Si bonds accompanied by the production of H O H and R O H species By definition condensation liberates a small molecule such as water or alcohol This type of reaction can continue to build larger and larger silicon containing molecules by the process of polymerization Thus a polymer is a huge molecule or macromolecule formed from hundreds or thousands of units called monomers The number of bonds that a monomer can form is called its functionality Polymerization of silicon alkoxide for instance can lead to complex branching of the polymer because a fully hydrolyzed monomer Si OH 4 is tetrafunctional can branch or bond in 4 different directions Alternatively under certain conditions e g low water concentration fewer than 4 of the OR or OH groups ligands will be capable of condensation so relatively little branching will occur The mechanisms of hydrolysis and condensation and the factors that bias the structure toward linear or branched structures are the most critical issues of sol gel science and technology This reaction is favored in both basic and acidic conditions Sono Ormosil EditSonication is an efficient tool for the synthesis of polymers The cavitational shear forces which stretch out and break the chain in a non random process result in a lowering of the molecular weight and poly dispersity Furthermore multi phase systems are very efficient dispersed and emulsified so that very fine mixtures are provided This means that ultrasound increases the rate of polymerisation over conventional stirring and results in higher molecular weights with lower polydispersities Ormosils organically modified silicate are obtained when silane is added to gel derived silica during sol gel process The product is a molecular scale composite with improved mechanical properties Sono Ormosils are characterized by a higher density than classic gels as well as an improved thermal stability An explanation therefore might be the increased degree of polymerization 11 Pechini process EditFor single cation systems like SiO2 and TiO2 hydrolysis and condensation processes naturally give rise to homogenous compositions For systems involving multiple cations such as strontium titanate SrTiO3 and other perovskite systems the concept of steric immobilisation becomes relevant To avoid the formation of multiple phases of binary oxides as the result of differing hydrolysis and condensation rates the entrapment of cations in a polymer network is an effective approach generally termed the Pechini Process 12 In this process a chelating agent is used most often citric acid to surround aqueous cations and sterically entrap them Subsequently a polymer network is formed to immobilize the chelated cations in a gel or resin This is most often achieved by poly esterification using ethylene glycol The resulting polymer is then combusted under oxidising conditions to remove organic content and yield a product oxide with homogeneously dispersed cations 13 Nanomaterials Edit Nanostructure of a resorcinol formaldehyde gel reconstructed from small angle X ray scattering This type of disordered morphology is typical of many sol gel materials 14 In the processing of fine ceramics the irregular particle sizes and shapes in a typical powder often lead to non uniform packing morphologies that result in packing density variations in the powder compact Uncontrolled flocculation of powders due to attractive van der Waals forces can also give rise to microstructural heterogeneities 15 16 Differential stresses that develop as a result of non uniform drying shrinkage are directly related to the rate at which the solvent can be removed and thus highly dependent upon the distribution of porosity Such stresses have been associated with a plastic to brittle transition in consolidated bodies 17 and can yield to crack propagation in the unfired body if not relieved In addition any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the sintering process yielding heterogeneous densification Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end point densities Differential stresses arising from heterogeneous densification have also been shown to result in the propagation of internal cracks thus becoming the strength controlling flaws 18 19 20 21 22 It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity rather than using particle size distributions which will maximize the green density The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over particle particle interactions Monodisperse colloids provide this potential 8 9 23 Monodisperse powders of colloidal silica for example may therefore be stabilized sufficiently to ensure a high degree of order in the colloidal crystal or polycrystalline colloidal solid which results from aggregation The degree of order appears to be limited by the time and space allowed for longer range correlations to be established Such defective polycrystalline structures would appear to be the basic elements of nanoscale materials science and therefore provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in inorganic systems such as sintered ceramic nanomaterials 24 25 Applications EditThe applications for sol gel derived products are numerous 26 27 28 29 30 31 For example scientists have used it to produce the world s lightest materials and also some of its toughest ceramics Protective coatings Edit One of the largest application areas is thin films which can be produced on a piece of substrate by spin coating or dip coating Protective and decorative coatings and electro optic components can be applied to glass metal and other types of substrates with these methods Cast into a mold and with further drying and heat treatment dense ceramic or glass articles with novel properties can be formed that cannot be created by any other method Other coating methods include spraying electrophoresis inkjet 32 33 printing or roll coating Thin films and fibers Edit With the viscosity of a sol adjusted into a proper range both optical and refractory ceramic fibers can be drawn which are used for fiber optic sensors and thermal insulation respectively Thus many ceramic materials both glassy and crystalline have found use in various forms from bulk solid state components to high surface area forms such as thin films coatings and fibers 10 34 Also thin films have found their application in the electronic field 35 and can be used as sensitive components of a resistive gas sensors 36 Nanoscale powders Edit Ultra fine and uniform ceramic powders can be formed by precipitation These powders of single and multiple component compositions can be produced on a nanoscale particle size for dental and biomedical applications Composite powders have been patented for use as agrochemicals and herbicides Powder abrasives used in a variety of finishing operations are made using a sol gel type process One of the more important applications of sol gel processing is to carry out zeolite synthesis Other elements metals metal oxides can be easily incorporated into the final product and the silicate sol formed by this method is very stable Biomedical Edit Another application in research is to entrap biomolecules for sensory biosensors or catalytic purposes by physically or chemically preventing them from leaching out and in the case of protein or chemically linked small molecules by shielding them from the external environment yet allowing small molecules to be monitored The major disadvantages are that the change in local environment may alter the functionality of the protein or small molecule entrapped and that the synthesis step may damage the protein To circumvent this various strategies have been explored such as monomers with protein friendly leaving groups e g glycerol and the inclusion of polymers which stabilize protein e g PEG 37 Other products fabricated with this process include various ceramic membranes for microfiltration ultrafiltration nanofiltration pervaporation and reverse osmosis If the liquid in a wet gel is removed under a supercritical condition a highly porous and extremely low density material called aerogel is obtained Drying the gel by means of low temperature treatments 25 100 C it is possible to obtain porous solid matrices called xerogels In addition a sol gel process was developed in the 1950s for the production of radioactive powders of UO2 and ThO2 for nuclear fuels without generation of large quantities of dust Opto mechanical Edit Macroscopic optical elements and active optical components as well as large area hot mirrors cold mirrors lenses and beam splitters all with optimal geometry can be made quickly and at low cost via the sol gel route In the processing of high performance ceramic nanomaterials with superior opto mechanical properties under adverse conditions the size of the crystalline grains is determined largely by the size of the crystalline particles present in the raw material during the synthesis or formation of the object Thus a reduction of the original particle size well below the wavelength of visible light 500 nm eliminates much of the light scattering resulting in a translucent or even transparent material Furthermore results indicate that microscopic pores in sintered ceramic nanomaterials mainly trapped at the junctions of microcrystalline grains cause light to scatter and prevented true transparency it has been observed that the total volume fraction of these nanoscale pores both intergranular and intragranular porosity must be less than 1 for high quality optical transmission I E The density has to be 99 99 of the theoretical crystalline density 38 39 Medicine Edit Unique properties of the sol gel provide the possibility of their use for a variety of medical applications 40 41 42 A sol gel processed alumina can be used as a carrier for the sustained delivery of drugs and as an established wound healer A marked decrease in scar size was observed because of the wound healing composite including sol gel processed alumina A novel approach to thrombolysis treatment is possible by developing a new family of injectable composites plasminogen activator entrapped within alumina See also EditCoacervate small spheroidal droplet of colloidal particles in suspension Freeze casting Freeze gelation Mechanics of gelation Random graph theory of gelationReferences Edit a b Hanaor D A H Chironi I Karatchevtseva I Triani G Sorrell C C 2012 Single and Mixed Phase TiO2 Powders Prepared by Excess Hydrolysis of Titanium Alkoxide Advances in Applied Ceramics 111 3 149 158 arXiv 1410 8255 doi 10 1179 1743676111Y 0000000059 Brinker C J G W Scherer 1990 Sol Gel Science The Physics and Chemistry of Sol Gel Processing Academic Press ISBN 978 0 12 134970 7 Hench L L J K West 1990 The Sol Gel Process Chemical Reviews 90 33 72 doi 10 1021 cr00099a003 Klein L 1994 Sol Gel Optics Processing and Applications Springer Verlag ISBN 978 0 7923 9424 2 Klein L C and Garvey G J Kinetics of the Sol Gel Transition Journal of Non Crystalline Solids Vol 38 p 45 1980 Brinker C J et al Sol Gel Transition in Simple Silicates J Non Crystalline Solids Vol 48 p 47 1982 Einstein A Ann Phys Vol 19 p 289 1906 Vol 34 p 591 1911 a b Allman III R M Structural Variations in Colloidal Crystals M S Thesis UCLA 1983 a b Allman III R M and Onoda G Y Jr Unpublished work IBM T J Watson Research Center 1984 a b Sakka S et al The Sol Gel Transition Formation of Glass Fibers amp Thin Films J Non Crystalline Solids Vol 48 p 31 1982 Rosa Fox N de la Pinero M Esquivias L 2002 Organic Inorganic Hybrid Materials from Sonogels 2002 Nishio Keishi Tsuchiya Tsuchiya 2004 12 17 Chapter 3 Sol Gel Processing of Thin Films with Metal Salts In Sakka JSumio ed Handbook of Sol Gel Science and Technology Processing Characterisation and Applications Kluwer Academic pp 59 66 ISBN 9781402079696 Chen W et al 2018 Enhancement of Ce Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol Gel versus Pechini Syntheses PDF Inorganic Chemistry 57 12 7279 7289 doi 10 1021 acs inorgchem 8b00926 PMID 29863346 Gommes C J Roberts A 2008 Structure development of resorcinol formaldehyde gels microphase separation or colloid aggregation Physical Review E 77 041409 Onoda G Y and Hench L L Ceramic Processing Before Firing Wiley amp Sons New York 1979 Aksay I A Lange F F Davis B I Lange Davis 1983 Uniformity of Al2O3 ZrO2 Composites by Colloidal Filtration J Am Ceram Soc 66 10 C 190 doi 10 1111 j 1151 2916 1983 tb10550 x CS1 maint multiple names authors list link Franks G V amp Lange F F 1996 Plastic to Brittle Transition of Saturated Alumina Powder Compacts J Am Ceram Soc 79 12 3161 3168 doi 10 1111 j 1151 2916 1996 tb08091 x Evans A G amp Davidge R W 1969 The strength and fracture of fully dense polycrystalline magnesium oxide Phil Mag 20 164 373 388 Bibcode 1969PMag 20 373E doi 10 1080 14786436908228708 Evans A G Davidge R W 1970 Strength and fracture of fully dense polycrystalline magnesium oxide Journal of Materials Science 5 4 314 325 Bibcode 1970JMatS 5 314E doi 10 1007 BF02397783 S2CID 137539240 Evans A G Davidge R W 1970 The strength and oxidation of reaction sintered silicon nitride J Mater Sci 5 4 314 325 Bibcode 1970JMatS 5 314E doi 10 1007 BF02397783 S2CID 137539240 Lange F F amp Metcalf M 1983 Processing Related Fracture Origins II Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering J Am Ceram Soc 66 6 398 406 doi 10 1111 j 1151 2916 1983 tb10069 x Evans A G 1987 Considerations of Inhomogeneity Effects in Sintering Journal of the American Ceramic Society 65 10 497 501 doi 10 1111 j 1151 2916 1982 tb10340 x Allman III R M in Microstructural Control Through Colloidal Consolidation Aksay I A Adv Ceram Vol 9 p 94 Proc Amer Ceramic Soc Columbus OH 1984 Whitesides G M et al 1991 Molecular Self Assembly and Nanochemistry A Chemical Strategy for the Synthesis of Nanostructures Science 254 5036 1312 9 Bibcode 1991Sci 254 1312W doi 10 1126 science 1962191 PMID 1962191 Dubbs D M Aksay I A Aksay 2000 Self Assembled Ceramics Annu Rev Phys Chem 51 601 22 Bibcode 2000ARPC 51 601D doi 10 1146 annurev physchem 51 1 601 PMID 11031294 Wright J D and Sommerdijk N A J M Sol Gel Materials Chemistry and Applications Aegerter M A and Mennig M Sol Gel Technologies for Glass Producers and Users Phalippou J Sol Gel A Low temperature Process for the Materials of the New Millennium solgel com 2000 Brinker C J and Scherer G W Sol Gel Science The Physics and Chemistry of Sol Gel Processing Academic Press 1990 ISBN 9780121349707 German Patent 736411 Granted 6 May 1943 Anti Reflective Coating W Geffcken and E Berger Jenaer Glasswerk Schott Klein L C Sol Gel Optics Processing and Applications Springer Verlag 1994 Yakovlev Aleksandr V 22 March 2016 Inkjet Color Printing by Interference Nanostructures ACS Nano 10 3 3078 3086 doi 10 1021 acsnano 5b06074 PMID 26805775 Yakovlev Aleksandr V December 2015 Sol Gel Assisted Inkjet Hologram Patterning Advanced Functional Materials 25 47 7375 7380 doi 10 1002 adfm 201503483 Patel P J et al 2000 Transparent ceramics for armor and EM window applications Proc SPIE Vol 4102 p 1 Inorganic Optical Materials II Marker A J and Arthurs E G Eds Gorobtsov Philipp Yu Fisenko Nikita A Solovey Valentin R Simonenko Nikolay P Simonenko Elizaveta P Volkov Ivan A Sevastyanov Vladimir G Kuznetsov Nikolay T July 2021 Microstructure and local electrophysical properties of sol gel derived In2O3 10 SnO2 V2O5 films Colloid and Interface Science Communications 43 100452 doi 10 1016 j colcom 2021 100452 Mokrushin Artem S Fisenko Nikita A Gorobtsov Philipp Yu Simonenko Tatiana L Glumov Oleg V Melnikova Natalia A Simonenko Nikolay P Bukunov Kirill A Simonenko Elizaveta P Sevastyanov Vladimir G Kuznetsov Nikolay T January 2021 Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor Talanta 221 121455 doi 10 1016 j talanta 2020 121455 Gupta R Chaudhury NK Chaudhury 2007 Entrapment of biomolecules in sol gel matrix for applications in biosensors problems and future prospects Biosens Bioelectron 22 11 2387 99 doi 10 1016 j bios 2006 12 025 PMID 17291744 Yoldas B E 1979 Monolithic glass formation by chemical polymerization Journal of Materials Science 14 8 1843 1849 Bibcode 1979JMatS 14 1843Y doi 10 1007 BF00551023 Prochazka S Klug F J 1983 Infrared Transparent Mullite Ceramic Journal of the American Ceramic Society 66 12 874 880 doi 10 1111 j 1151 2916 1983 tb11004 x Volodina K 2014 A synergistic biocomposite for wound healing and decreasing scar size based on sol gel alumina RSC Advances 4 105 60445 60450 doi 10 1039 C4RA09015B Vinogradov Vasiliy V Vinogradov Alexander V Sobolev Vladimir E Dudanov Ivan P Vinogradov Vladimir V 25 December 2014 Plasminogen activator entrapped within injectable alumina a novel approach to thrombolysis treatment Journal of Sol Gel Science and Technology 73 2 501 505 doi 10 1007 s10971 014 3601 4 Vinogradov Vladimir V Avnir David 2 January 2015 Exceptional thermal stability of industrially important enzymes by entrapment within nano boehmite derived alumina RSC Adv 5 15 10862 10868 doi 10 1039 C4RA10944A Further reading EditColloidal Dispersions Russel W B et al Eds Cambridge University Press 1989 Glasses and the Vitreous State Zarzycki J Cambridge University Press 1991 The Sol to Gel Transition Plinio Innocenzi Springer Briefs in Materials Springer 2016 External links EditInternational Sol Gel Society The Sol Gel Gateway Retrieved from https en wikipedia org w index php title Sol gel process amp oldid 1044564650, wikipedia, wiki, book,

books

, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.