fbpx
Wikipedia

Vine

This article is about climbing plants in general. For the short-form video service, see Vine (service). For grapevines, see Vitis. For other uses, see Vine (disambiguation).

A vine (Latin vīnea "grapevine", "vineyard", from vīnum "wine") is any plant with a growth habit of trailing or scandent (that is, climbing) stems, lianas or runners. The word vine can also refer to such stems or runners themselves, for instance, when used in wicker work.

Betel, a climbing plant

In parts of the world, including the British Isles, the term "vine" usually applies exclusively to grapevines (Vitis), while the term "climber" is used for all climbing plants.

Contents

Convolvulus vine twining around a steel fixed ladder
Grapevine covering a chimney

Certain plants always grow as vines, while a few grow as vines only part of the time. For instance, poison ivy and bittersweet can grow as low shrubs when support is not available, but will become vines when support is available.

A vine displays a growth form based on very long stems. This has two purposes. A vine may use rock exposures, other plants, or other supports for growth rather than investing energy in a lot of supportive tissue, enabling the plant to reach sunlight with a minimum investment of energy. This has been a highly successful growth form for plants such as kudzu and Japanese honeysuckle, both of which are invasive exotics in parts of North America. There are some tropical vines that develop skototropism, and grow away from the light, a type of negative phototropism. Growth away from light allows the vine to reach a tree trunk, which it can then climb to brighter regions.

The vine growth form may also enable plants to colonize large areas quickly, even without climbing high. This is the case with periwinkle and ground ivy. It is also an adaptation to life in areas where small patches of fertile soil are adjacent to exposed areas with more sunlight but little or no soil. A vine can root in the soil but have most of its leaves in the brighter, exposed area, getting the best of both environments.

The evolution of a climbing habit has been implicated as a key innovation associated with the evolutionary success and diversification of a number of taxonomic groups of plants. It has evolved independently in several plant families, using many different climbing methods, such as:

  • twining the stem around a support (e.g., morning glories, Ipomoea species)
  • by way of adventitious, clinging roots (e.g., ivy, Hedera species)
  • with twining petioles (e.g., Clematis species)
  • using tendrils, which can be specialized shoots (Vitaceae), leaves (Bignoniaceae), or even inflorescences (Passiflora)
  • using tendrils which also produce adhesive pads at the end that attach themselves quite strongly to the support (Parthenocissus)
  • using thorns (e.g. climbing rose) or other hooked structures, such as hooked branches (e.g. Artabotrys hexapetalus)

The climbing fetterbush (Pieris phillyreifolia) is a woody shrub-vine which climbs without clinging roots, tendrils, or thorns. It directs its stem into a crevice in the bark of fibrous barked trees (such as bald cypress) where the stem adopts a flattened profile and grows up the tree underneath the host tree's outer bark. The fetterbush then sends out branches that emerge near the top of the tree.

Most vines are flowering plants. These may be divided into woody vines or lianas, such as wisteria, kiwifruit, and common ivy, and herbaceous (nonwoody) vines, such as morning glory.

One odd group of vining plants is the fern genus Lygodium, called climbing ferns. The stem does not climb, but rather the fronds (leaves) do. The fronds unroll from the tip, and theoretically never stop growing; they can form thickets as they unroll over other plants, rockfaces, and fences.

L: A left-handed bine grows in an anticlockwise direction from the ground. (S-twist)
R: A right-handed bine grows in a clockwise direction from the ground. (Z-twist)

Twining vines

Twining vine / bine (Fockea edulis)
Tendril-supported vine (Brunnichia ovata)

A twining vine, also known as a bine, is one that climbs by its shoots growing in a helix, in contrast to vines that climb using tendrils or suckers. Many bines have rough stems or downward-pointing bristles to aid their grip. Hops (used in flavoring beer) are a commercially important example of a bine.

The direction of rotation of the shoot tip during climbing is autonomous and does not (as sometimes imagined) derive from the shoot's following the sun around the sky – the direction of twist does not therefore depend upon which side of the equator the plant is growing on. This is shown by the fact that some bines always twine clockwise, including runner bean (Phaseolus coccineus) and bindweed (Convolvulus species), while others twine anticlockwise, including French bean (Phaseolus vulgaris) and climbing honeysuckles (Lonicera species). The contrasting rotations of bindweed and honeysuckle was the theme of the satirical song "Misalliance", written and sung by Michael Flanders and Donald Swann.

The term "vine" also applies to cucurbitaceae like cucumbers where botanists refer to creeping vines; in commercial agriculture the natural tendency of coiling tendrils to attach themselves to pre-existing structures or espaliers is optimized by the installation of trellis netting.

Gardeners can use the tendency of climbing plants to grow quickly. If a plant display is wanted quickly, a climber can achieve this. Climbers can be trained over walls, pergolas, fences, etc. Climbers can be grown over other plants to provide additional attraction. Artificial support can also be provided. Some climbers climb by themselves; others need work, such as tying them in and training them.

This section needs attention from an expert in plants. The specific problem is: It is the work of a student editor, it needs verification, and may be overly technical for this article. WikiProject Plants may be able to help recruit an expert.(May 2018)

Vines widely differ in size, form and evolutionary origin. Darwin classified climbing groups based on their climbing method. He classified five classes of vines – twining plants, leaf climbers, tendril bearers, root climbers and hook climbers.

Vines are unique in that they have multiple evolutionary origins. They usually reside in tropical locations and have the unique ability to climb. Vines are able to grow in both deep shade and full sun due to their uniquely wide range of phenotypic plasticity. This climbing action prevents shading by neighbors and allows the vine to grow out of reach of herbivores. The environment where a vine can grow successfully is determined by the climbing mechanism of a vine and how far it can spread across supports. There are many theories supporting the idea that photosynthetic responses are closely related to climbing mechanisms.

A large Apios vine on the street in Sochi, Russia

Temperate twining vines, which twist tightly around supports, are typically poorly adapted for climbing beneath closed canopies due to their smaller support diameter and shade intolerance. In contrast, tendril vines usually grow on the forest floor and onto trees until they reach the surface of the canopy, suggesting that they have greater physiological plasticity. It has also been suggested that twining vines' revolving growth is mediated by changes in turgor pressure mediated by volume changes in the epidermal cells of the bending zone.

Climbing vines can take on many unique characteristics in response to changes in their environments. Climbing vines can induce chemical defenses and modify their biomass allocation in response to herbivores. In particular, the twisting vine Convolvulus arvensis increases its twining in response to herbivore-associated leaf damage, which may lead to reduced future herbivory. Additionally, the tendrils of perennial vine Cayratia japonica are more likely to coil around nearby plants of another species than nearby plants of the same species in natural and experimental settings. This ability, which has only been previously documented in roots, demonstrates the vine's ability to distinguish whether another plant is of the same species as itself or a different one.

In tendrilled vines, the tendrils are highly sensitive to touch and the coiling action is mediated by the hormones octadecanoids, jasmonates and indole-3-acetic acid. The touch stimulus and hormones may interact via volatile compounds or internal oscillation patterns. Research has found the presence of ion translocating ATPases in the Bryonia dioica species of plants, which has implications for a possible ion mediation tendril curling mechanism. In response to a touch stimulus, vanadate sensitive K+, Mg2+ ATPase and a Ca2+ translocating ATPase rapidly increase their activity. This increases transmembrane ion fluxes that appear to be involved in the early stages of tendril coiling.

Canary Creeper trailing on a trellis.
Ficus pumila's vigorous wall growth
Spring growth of Virginia Creeper
Scrambling habit of Climbing groundsel.
Confederate jasmine with flowers
Bower vine's showy flowers
Mandevilla trailing on trellis
  1. Brown, Lesley (1993).The New shorter Oxford English dictionary on historical principles. Oxford [Eng.]: Clarendon. ISBN 0-19-861271-0.
  2. Jackson; Benjamin; Daydon (1928). A Glossary of Botanic Terms with their Derivation and Accent, 4th ed. London: Gerald Duckworth & Co.
  3. Francis E. Putz (1991). The Biology of Vines. Cambridge University Press. pp. xiii. ISBN 978-0-521-39250-1. Using 'vines' to denote all climbing plants may initially confuse some readers from lands where, with due respect for wine, 'the vine' is used solely in reference to grapes.
  4. Shorter Oxford English dictionary, 6th ed. Oxford, UK: Oxford University Press. 2007. p. 3804. ISBN 978-0199206872.
  5. "Creepers". mannuthynursery. Retrieved17 July 2013.
  6. Glimn-Lacy, Janice; Kaufman, Peter B. (2006). Botany Illustrated. Springer. doi:10.1007/0-387-28875-9. ISBN 978-0-387-28870-3.
  7. Gianoli, Ernesto (2004). "Evolution of a climbing habit promotes diversification in flowering plants". Proceedings of the Royal Society B: Biological Sciences. 271 (1552): 2011–2015. doi:10.1098/rspb.2004.2827. JSTOR 4142967. PMC1691831. PMID 15451690.
  8. Putz, Francis E. "Vine Ecology". Retrieved1 March 2012.
  9. Weakley, Alan (2010). Flora of the Southern and Mid-Atlantic States(PDF). p. 661.
  10. "Japanese climbing fern". Center for Aquatic and Invasive Plants. Retrieved17 July 2013.
  11. Haldeman, Jan. "As the vine twines". Native and Naturalized Plants of the Carolinas and Georgia. Retrieved16 January 2018.
  12. Weakley, Alan S. (May 2015). Flora of the Southern and Mid-Atlantic States. UNC Herbarium, North Carolina Botanical Garden, University of North Carolina at Chapel Hill. Retrieved16 January 2018.
  13. bine at Merriam-Webster
  14. Cone Heads at Willamette Week
  15. Misalliance
  16. Gianoli, Ernesto; Molina-Montenegro, Marco A. (2005). "Leaf Damage Induces Twining in a Climbing Plant". The New Phytologist. 167 (2): 385–90. doi:10.1111/j.1469-8137.2005.01484.x. JSTOR 3694507. PMID 15998392.
  17. Carter, Gregory A.; Teramura, Alan H. (1988). "Vine Photosynthesis and Relationships to Climbing Mechanisms in a Forest Understory". American Journal of Botany. 75 (7): 1101. doi:10.2307/2443769. JSTOR 2443769.
  18. Millet, B.; Melin, D.; Badot, P.-M. (1988). "Circumnutation in Phaseolus vulgaris. I. Growth, osmotic potential and cell ultrastructure in the free moving part of the shoot". Physiologia Plantarum. 72: 133–138. doi:10.1111/j.1399-3054.1988.tb06634.x.
  19. Molina-Montenegro, Marco A.; Gianoli, Ernesto; Becerra, José (2007). "Interactive Effects of Leaf Damage, Light Intensity and Support Availability on Chemical Defenses and Morphology of a Twining Vine". Journal of Chemical Ecology. 33 (1): 95–103. doi:10.1007/s10886-006-9215-8. PMID 17111219. S2CID 27419071.
  20. Fukano, Yuya; Yamawo, Akira (26 August 2015). "Self-discrimination in the tendrils of the vine is mediated by physiological connection". Proceedings of the Royal Society B: Biological Sciences. 282 (1814): 20151379. doi:10.1098/rspb.2015.1379. PMC4571702. PMID 26311669.
  21. Liß, H.; Weiler, E. W. (July 1994). "Ion-translocating ATPases in tendrils of Bryonia dioica Jacq". Planta. 194 (2): 169–180. doi:10.1007/BF00196385. JSTOR 23383001. S2CID 25162242.
Look up vine in Wiktionary, the free dictionary.

Vine
Vine Language Watch Edit This article is about climbing plants in general For the short form video service see Vine service For grapevines see Vitis For other uses see Vine disambiguation A vine Latin vinea grapevine vineyard from vinum wine is any plant with a growth habit of trailing or scandent that is climbing stems lianas or runners The word vine can also refer to such stems or runners themselves for instance when used in wicker work 1 2 Betel a climbing plant A tendril In parts of the world including the British Isles the term vine usually applies exclusively to grapevines Vitis 3 while the term climber is used for all climbing plants 4 Contents 1 Growth forms 1 1 Twining vines 2 Horticultural climbing plants 3 Scientific description 4 Example vine taxa 5 See also 6 References 7 External linksGrowth forms Edit Convolvulus vine twining around a steel fixed ladder Grapevine covering a chimney Certain plants always grow as vines while a few grow as vines only part of the time For instance poison ivy and bittersweet can grow as low shrubs when support is not available but will become vines when support is available 5 A vine displays a growth form based on very long stems This has two purposes A vine may use rock exposures other plants or other supports for growth rather than investing energy in a lot of supportive tissue enabling the plant to reach sunlight with a minimum investment of energy This has been a highly successful growth form for plants such as kudzu and Japanese honeysuckle both of which are invasive exotics in parts of North America There are some tropical vines that develop skototropism and grow away from the light a type of negative phototropism Growth away from light allows the vine to reach a tree trunk which it can then climb to brighter regions 6 The vine growth form may also enable plants to colonize large areas quickly even without climbing high This is the case with periwinkle and ground ivy It is also an adaptation to life in areas where small patches of fertile soil are adjacent to exposed areas with more sunlight but little or no soil A vine can root in the soil but have most of its leaves in the brighter exposed area getting the best of both environments The evolution of a climbing habit has been implicated as a key innovation associated with the evolutionary success and diversification of a number of taxonomic groups of plants 7 It has evolved independently in several plant families using many different climbing methods 8 such as twining the stem around a support e g morning glories Ipomoea species by way of adventitious clinging roots e g ivy Hedera species with twining petioles e g Clematis species using tendrils which can be specialized shoots Vitaceae leaves Bignoniaceae or even inflorescences Passiflora using tendrils which also produce adhesive pads at the end that attach themselves quite strongly to the support Parthenocissus using thorns e g climbing rose or other hooked structures such as hooked branches e g Artabotrys hexapetalus The climbing fetterbush Pieris phillyreifolia is a woody shrub vine which climbs without clinging roots tendrils or thorns It directs its stem into a crevice in the bark of fibrous barked trees such as bald cypress where the stem adopts a flattened profile and grows up the tree underneath the host tree s outer bark The fetterbush then sends out branches that emerge near the top of the tree 9 Most vines are flowering plants These may be divided into woody vines or lianas such as wisteria kiwifruit and common ivy and herbaceous nonwoody vines such as morning glory One odd group of vining plants is the fern genus Lygodium called climbing ferns 10 The stem does not climb but rather the fronds leaves do The fronds unroll from the tip and theoretically never stop growing they can form thickets as they unroll over other plants rockfaces and fences L A left handed bine grows in an anticlockwise direction from the ground S twist R A right handed bine grows in a clockwise direction from the ground Z twist 11 12 Twining vines Edit Twining vine bine Fockea edulis Tendril supported vine Brunnichia ovata A twining vine also known as a bine is one that climbs by its shoots growing in a helix in contrast to vines that climb using tendrils or suckers Many bines have rough stems or downward pointing bristles to aid their grip Hops used in flavoring beer are a commercially important example of a bine 13 14 The direction of rotation of the shoot tip during climbing is autonomous and does not as sometimes imagined derive from the shoot s following the sun around the sky the direction of twist does not therefore depend upon which side of the equator the plant is growing on This is shown by the fact that some bines always twine clockwise including runner bean Phaseolus coccineus and bindweed Convolvulus species while others twine anticlockwise including French bean Phaseolus vulgaris and climbing honeysuckles Lonicera species The contrasting rotations of bindweed and honeysuckle was the theme of the satirical song Misalliance written and sung by Michael Flanders and Donald Swann 15 Horticultural climbing plants EditThe term vine also applies to cucurbitaceae like cucumbers where botanists refer to creeping vines in commercial agriculture the natural tendency of coiling tendrils to attach themselves to pre existing structures or espaliers is optimized by the installation of trellis netting Gardeners can use the tendency of climbing plants to grow quickly If a plant display is wanted quickly a climber can achieve this Climbers can be trained over walls pergolas fences etc Climbers can be grown over other plants to provide additional attraction Artificial support can also be provided Some climbers climb by themselves others need work such as tying them in and training them Scientific description EditThis section needs attention from an expert in plants The specific problem is It is the work of a student editor it needs verification and may be overly technical for this article WikiProject Plants may be able to help recruit an expert May 2018 Vines widely differ in size form and evolutionary origin Darwin classified climbing groups based on their climbing method He classified five classes of vines twining plants leaf climbers tendril bearers root climbers and hook climbers Vines are unique in that they have multiple evolutionary origins They usually reside in tropical locations and have the unique ability to climb Vines are able to grow in both deep shade and full sun due to their uniquely wide range of phenotypic plasticity This climbing action prevents shading by neighbors and allows the vine to grow out of reach of herbivores 16 The environment where a vine can grow successfully is determined by the climbing mechanism of a vine and how far it can spread across supports There are many theories supporting the idea that photosynthetic responses are closely related to climbing mechanisms A large Apios vine on the street in Sochi Russia Temperate twining vines which twist tightly around supports are typically poorly adapted for climbing beneath closed canopies due to their smaller support diameter and shade intolerance In contrast tendril vines usually grow on the forest floor and onto trees until they reach the surface of the canopy suggesting that they have greater physiological plasticity 17 It has also been suggested that twining vines revolving growth is mediated by changes in turgor pressure mediated by volume changes in the epidermal cells of the bending zone 18 Climbing vines can take on many unique characteristics in response to changes in their environments Climbing vines can induce chemical defenses and modify their biomass allocation in response to herbivores In particular the twisting vine Convolvulus arvensis increases its twining in response to herbivore associated leaf damage which may lead to reduced future herbivory 19 Additionally the tendrils of perennial vine Cayratia japonica are more likely to coil around nearby plants of another species than nearby plants of the same species in natural and experimental settings This ability which has only been previously documented in roots demonstrates the vine s ability to distinguish whether another plant is of the same species as itself or a different one In tendrilled vines the tendrils are highly sensitive to touch and the coiling action is mediated by the hormones octadecanoids jasmonates and indole 3 acetic acid The touch stimulus and hormones may interact via volatile compounds or internal oscillation patterns 20 Research has found the presence of ion translocating ATPases in the Bryonia dioica species of plants which has implications for a possible ion mediation tendril curling mechanism In response to a touch stimulus vanadate sensitive K Mg2 ATPase and a Ca2 translocating ATPase rapidly increase their activity This increases transmembrane ion fluxes that appear to be involved in the early stages of tendril coiling 21 Example vine taxa Edit Canary Creeper trailing on a trellis Ficus pumila s vigorous wall growth Spring growth of Virginia Creeper Scrambling habit of Climbing groundsel Confederate jasmine with flowers Bower vine s showy flowers Mandevilla trailing on trellis Oceanblue morning glory Actinidia arguta the tara vine Actinidia polygama the silver vine Adlumia fungosa the Allegheny vine Aeschynanthus radicans the lipstick vine Akebia the chocolate vine Allamanda cathartica common trumpetvine Ampelocissus acetosa known as wild grape or djabaru Ampelopsis glandulosa var brevipedunculata known as wild grape or porcelain berry Anredera cordifolia Madeira vine Antigonon the coral vine Antigonon leptopus the confederate vine Aptenia cordifolia the heart leaved aptenia Araujia sericifera moth vine Asparagus asparagoides bridal creeper bridal veil creeper Berchemia scandens the rattan vine Bignonia the cross vine Bougainvillea a genus of thorny ornamental vines bushes and trees Callerya megasperma native wisteria Campsis the trumpet vine Campsis grandiflora the Chinese trumpet vine Cardiospermum halicacabum the balloon vine Celastrus the staff vine Ceropegia woodii string of hearts Clematis vitalba traveller s joy Clerodendrum thomsoniae bleeding heart vine Clitoria ternatea butterfly pea Ceropegia linearis the rosary vine or sweetheart vine Cissus antarctica the kangaroo vine Cissus hypoglauca the water vine Citrullus lanatus var lanatus the watermelon Cobaea scandens cup and saucer vine cathedral bells Mexican ivy Cochliasanthus known as corkscrew vine snail vine snail creeper Cucumis sativus the cucumber Cyphostemma juttae known as wild grape Delairea German ivy Dolichandra unguis cati cats claw creeper funnel creeper or cat s claw trumpet Epipremnum aureum known as golden pothos and devil s ivy Fallopia baldschuanica the Russian vine Ficus pumila known as the climbing fig Hardenbergia violacea lilac vine Hedera helix known as common ivy English ivy European ivy or ivy Hibbertia scandens climbing guinea flower golden guinea vine gold guinea plant Hoya a genus of about 300 species of climbing or creeping plants Humulus lupulus common hop Hydrangea petiolaris climbing hydrangea Ipomoea cairica known as Cairo morning glory coast morning glory and railroad creeper Ipomoea indica known as ocean blue morning glory Jasminum polyanthum pink jasmine Kadsura japonica kadsura vine Kennedia coccinea the common coral vine Kennedia nigricans black coral pea Lagenaria siceraria known as the bottle gourd calabash opo squash or long melon Lathyrus odoratus the sweet pea Lonicera japonica known as Suikazura or Japanese honeysuckle Luffa a genus of tropical and subtropical vines classified in the cucumber family Cucurbitaceae Lygodium a genus of about 40 species of ferns known as climbing ferns Mandevilla rocktrumpet Brazilian jasmine Momordica charantia the bitter gourd Mikania scandens the hemp vine Muehlenbeckia adpressa the macquarie vine Nepenthes a genus of carnivorous plants known as tropical pitcher plants or monkey cups Pandorea jasminoides bower vine Pandorea pandorana the wonga wonga vine Parthenocissus henryana Chinese Virginia creeper silver vein creeper Parthenocissus quinquefolia known as the Virginia creeper Victoria creeper five leaved ivy or five finger Parthenocissus tricuspidata Boston ivy Japanese ivy Passiflora edulis the passion fruit Periploca graeca the silk vine Philodendron hederaceum heartleaf philodendron Podranea ricasoliana the pink trumpet vine Pueraria lobata the kudzu vine Pyrostegia venusta flamevine or orange trumpet vine Pseudogynoxys chenopodioides Mexican flamevine Rosa banksiae Lady Banks rose Rosa filipes climbing rose Schizophragma hydrangea vine Scindapsus pictus the silver vine Sechium edule known as chayote christophene or several other names Senecio angulatus known as Cape ivy Solandra a genus of flowering plants in the nightshade family Solanum laxum the potato vine Stephania japonica snake vine Stephanotis floribunda known as Madagascar jasmine Strongylodon macrobotrys the jade vine Syngonium the goosefoot vine Syngonium podophyllum the arrowhead vine Thunbergia alata black eyed Susan Thunbergia grandiflora known as the Bengal clock vine or blue trumpet vine Thunbergia erecta the bush clock vine Toxicodendron radicans known as poison ivy Trachelospermum asiaticum Asiatic jasmine Trachelospermum jasminoides confederate jasmine star jasmine Vitis any of about sixty species of grape Wisteria a genus of flowering plants in the pea family Xerosicyos silver dollar vineSee also EditVine disambiguation Liana any of various long stemmed woody vines Nutation botany bending and growth patterns of plants which dictate the growth of vines On the Movements and Habits of Climbing Plants by Charles Darwin List of world s longest vines Vine training systems Pergola Trellis architecture References Edit Brown Lesley 1993 The New shorter Oxford English dictionary on historical principles Oxford Eng Clarendon ISBN 0 19 861271 0 Jackson Benjamin Daydon 1928 A Glossary of Botanic Terms with their Derivation and Accent 4th ed London Gerald Duckworth amp Co Francis E Putz 1991 The Biology of Vines Cambridge University Press pp xiii ISBN 978 0 521 39250 1 Using vines to denote all climbing plants may initially confuse some readers from lands where with due respect for wine the vine is used solely in reference to grapes Shorter Oxford English dictionary 6th ed Oxford UK Oxford University Press 2007 p 3804 ISBN 978 0199206872 Creepers mannuthynursery Retrieved 17 July 2013 Glimn Lacy Janice Kaufman Peter B 2006 Botany Illustrated Springer doi 10 1007 0 387 28875 9 ISBN 978 0 387 28870 3 Gianoli Ernesto 2004 Evolution of a climbing habit promotes diversification in flowering plants Proceedings of the Royal Society B Biological Sciences 271 1552 2011 2015 doi 10 1098 rspb 2004 2827 JSTOR 4142967 PMC 1691831 PMID 15451690 Putz Francis E Vine Ecology Retrieved 1 March 2012 Weakley Alan 2010 Flora of the Southern and Mid Atlantic States PDF p 661 Japanese climbing fern Center for Aquatic and Invasive Plants Retrieved 17 July 2013 Haldeman Jan As the vine twines Native and Naturalized Plants of the Carolinas and Georgia Retrieved 16 January 2018 Weakley Alan S May 2015 Flora of the Southern and Mid Atlantic States UNC Herbarium North Carolina Botanical Garden University of North Carolina at Chapel Hill Retrieved 16 January 2018 bine at Merriam Webster Cone Heads at Willamette Week Misalliance Gianoli Ernesto Molina Montenegro Marco A 2005 Leaf Damage Induces Twining in a Climbing Plant The New Phytologist 167 2 385 90 doi 10 1111 j 1469 8137 2005 01484 x JSTOR 3694507 PMID 15998392 Carter Gregory A Teramura Alan H 1988 Vine Photosynthesis and Relationships to Climbing Mechanisms in a Forest Understory American Journal of Botany 75 7 1101 doi 10 2307 2443769 JSTOR 2443769 Millet B Melin D Badot P M 1988 Circumnutation in Phaseolus vulgaris I Growth osmotic potential and cell ultrastructure in the free moving part of the shoot Physiologia Plantarum 72 133 138 doi 10 1111 j 1399 3054 1988 tb06634 x Molina Montenegro Marco A Gianoli Ernesto Becerra Jose 2007 Interactive Effects of Leaf Damage Light Intensity and Support Availability on Chemical Defenses and Morphology of a Twining Vine Journal of Chemical Ecology 33 1 95 103 doi 10 1007 s10886 006 9215 8 PMID 17111219 S2CID 27419071 Fukano Yuya Yamawo Akira 26 August 2015 Self discrimination in the tendrils of the vine is mediated by physiological connection Proceedings of the Royal Society B Biological Sciences 282 1814 20151379 doi 10 1098 rspb 2015 1379 PMC 4571702 PMID 26311669 Liss H Weiler E W July 1994 Ion translocating ATPases in tendrils of Bryonia dioica Jacq Planta 194 2 169 180 doi 10 1007 BF00196385 JSTOR 23383001 S2CID 25162242 External links EditLook up vine in Wiktionary the free dictionary Media related to Vines at Wikimedia Commons Media related to Climbing plants at Wikimedia Commons Beach Chandler B ed 1914 Twiner The New Student s Reference Work Chicago F E Compton and Co Retrieved from https en wikipedia org w index php title Vine amp oldid 1054023023, wikipedia, wiki, book,

books

, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.