fbpx
Wikipedia

W and Z bosons

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z0
. The
W±
bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The
Z0
boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The
W±
bosons have a magnetic moment, but the
Z0
has none. All three of these particles are very short-lived, with a half-life of about3×10−25 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.


W±
and
Z0
Bosons
CompositionElementary particle
StatisticsBosonic
FamilyGauge boson
InteractionsWeak interaction
TheorizedGlashow, Weinberg, Salam (1968)
DiscoveredUA1 and UA2 collaborations, CERN, 1983
MassW:80.379±0.012 GeV/c2
Z:91.1876±0.0021 GeV/c2
Decay widthW:2.085±0.042 GeV/c2
Z:2.4952±0.0023 GeV/c2
Electric chargeW: ±1 e
Z: 0 e
Spin1
Weak isospinW: ±1
Z: 0
Weak hypercharge0

The
W
bosons are named after the weak force. The physicist Steven Weinberg named the additional particle the "
Z
particle", and later gave the explanation that it was the last additional particle needed by the model. The
W
bosons had already been named, and the
Z
bosons were named for having zero electric charge.

The two
W
bosons are verified mediators of neutrino absorption and emission. During these processes, the
W±
boson charge induces electron or positron emission or absorption, thus causing nuclear transmutation.

The
Z
boson mediates the transfer of momentum, spin and energy when neutrinos scatter elastically from matter (a process which conserves charge). Such behavior is almost as common as inelastic neutrino interactions and may be observed in bubble chambers upon irradiation with neutrino beams. The
Z
boson is not involved in the absorption or emission of electrons or positrons. Whenever an electron is observed as a new free particle, suddenly moving with kinetic energy, it is inferred to be a result of a neutrino interacting with the electron (with the momentum transfer via the Z boson) since this behavior happens more often when the neutrino beam is present. In this process, the neutrino simply strikes the electron (via exchange of a boson) and then scatters away from it, transferring some of the neutrino's momentum to the electron.

Contents

These bosons are among the heavyweights of the elementary particles. With masses of80.4 GeV/c2 and91.2 GeV/c2, respectively, the
W
and
Z
bosons are almost 80 times as massive as the proton – heavier, even, than entire iron atoms.

Their high masses limit the range of the weak interaction. By way of contrast, the photon is the force carrier of the electromagnetic force and has zero mass, consistent with the infinite range of electromagnetism; the hypothetical graviton is also expected to have zero mass. (Although gluons are also presumed to have zero mass, the range of the color force is limited for different reasons; see color confinement.)

All three bosons have particle spin s = 1. The emission of a
W+
or
W
boson either lowers or raises the electric charge of the emitting particle by one unit, and also alters the spin by one unit. At the same time, the emission or absorption of a
W±
boson can change the type of the particle – for example changing a strange quark into an up quark. The neutral Z boson cannot change the electric charge of any particle, nor can it change any other of the so-called "charges" (such as strangeness, baryon number, charm, etc.). The emission or absorption of a
Z0
boson can only change the spin, momentum, and energy of the other particle. (See also weak neutral current.)

The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate
W
boson

The
W
and
Z
bosons are carrier particles that mediate the weak nuclear force, much as the photon is the carrier particle for the electromagnetic force.

W bosons

The
W±
bosons are best known for their role in nuclear decay. Consider, for example, the beta decay of cobalt-60.

60
27
Co
60
28
Ni
+ +
e
+
ν
e

This reaction does not involve the whole cobalt-60 nucleus, but affects only one of its 33 neutrons. The neutron is converted into a proton while also emitting an electron (called a beta particle in this context) and an electron antineutrino:


n0

p+
+
e
+
ν
e

Again, the neutron is not an elementary particle but a composite of an up quark and two down quarks (udd). It is in fact one of the down quarks that interacts in beta decay, turning into an up quark to form a proton (uud). At the most fundamental level, then, the weak force changes the flavour of a single quark:


d

u
+
W

which is immediately followed by decay of the
W
itself:


W

e
+
ν
e

Z bosons

The
Z0
boson
is its own antiparticle. Thus, all of its flavour quantum numbers and charges are zero. The exchange of a
Z
boson between particles, called a neutral current interaction, therefore leaves the interacting particles unaffected, except for a transfer of spin and/or momentum.
Z
boson interactions involving neutrinos have distinct signatures: They provide the only known mechanism for elastic scattering of neutrinos in matter; neutrinos are almost as likely to scatter elastically (via
Z
boson exchange) as inelastically (via W boson exchange). Weak neutral currents via
Z
boson exchange were confirmed shortly thereafter (also in 1973), in a neutrino experiment in the Gargamelle bubble chamber at CERN.

A Feynman diagram showing the exchange of a pair of
W
bosons. This is one of the leading terms contributing to neutral Kaon oscillation.

Following the success of quantum electrodynamics in the 1950s, attempts were undertaken to formulate a similar theory of the weak nuclear force. This culminated around 1968 in a unified theory of electromagnetism and weak interactions by Sheldon Glashow, Steven Weinberg, and Abdus Salam, for which they shared the 1979 Nobel Prize in Physics. Their electroweak theory postulated not only the
W
bosons necessary to explain beta decay, but also a new
Z
boson that had never been observed.

The fact that the
W
and
Z
bosons have mass while photons are massless was a major obstacle in developing electroweak theory. These particles are accurately described by an SU(2) gauge theory, but the bosons in a gauge theory must be massless. As a case in point, the photon is massless because electromagnetism is described by a U(1) gauge theory. Some mechanism is required to break the SU(2) symmetry, giving mass to the
W
and
Z
in the process. The Higgs mechanism, first put forward by the 1964 PRL symmetry breaking papers, fulfills this role. It requires the existence of another particle, the Higgs boson, which has since been found at the Large Hadron Collider. Of the four components of a Goldstone boson created by the Higgs field, three are absorbed by the
W+
,

Z0
,
and
W
bosons to form their longitudinal components, and the remainder appears as the spin 0 Higgs boson.

The combination of the SU(2) gauge theory of the weak interaction, the electromagnetic interaction, and the Higgs mechanism is known as the Glashow–Weinberg–Salam model. Today it is widely accepted as one of the pillars of the Standard Model of particle physics, particularly given the 2012 discovery of the Higgs boson by the CMS and ATLAS experiments.

The model predicts that
W±
and
Z0
bosons have the following masses:

m W ± = 1 2 v g m Z 0 = 1 2 v g 2 + g 2 {\displaystyle {\begin{aligned}m_{{\text{W}}^{\pm }}&={\tfrac {1}{2}}vg\\m_{{\text{Z}}^{0}}&={\tfrac {1}{2}}v{\sqrt {g^{2}+{g'}^{2}}}\end{aligned}}}

where g {\displaystyle g} is the SU(2) gauge coupling, g {\displaystyle g'} is the U(1) gauge coupling, and v {\displaystyle v} is the Higgs vacuum expectation value.

The Gargamelle bubble chamber, now exhibited at CERN

Unlike beta decay, the observation of neutral current interactions that involve particles other than neutrinos requires huge investments in particle accelerators and detectors, such as are available in only a few high-energy physics laboratories in the world (and then only after 1983). This is because
Z
bosons behave in somewhat the same manner as photons, but do not become important until the energy of the interaction is comparable with the relatively huge mass of the
Z
boson.

The discovery of the
W
and
Z
bosons was considered a major success for CERN. First, in 1973, came the observation of neutral current interactions as predicted by electroweak theory. The huge Gargamelle bubble chamber photographed the tracks of a few electrons suddenly starting to move, seemingly of their own accord. This is interpreted as a neutrino interacting with the electron by the exchange of an unseen
Z
boson. The neutrino is otherwise undetectable, so the only observable effect is the momentum imparted to the electron by the interaction.

The discovery of the
W
and
Z
bosons themselves had to wait for the construction of a particle accelerator powerful enough to produce them. The first such machine that became available was the Super Proton Synchrotron, where unambiguous signals of W bosons were seen in January 1983 during a series of experiments made possible by Carlo Rubbia and Simon van der Meer. The actual experiments were called UA1 (led by Rubbia) and UA2 (led by Pierre Darriulat), and were the collaborative effort of many people. Van der Meer was the driving force on the accelerator end (stochastic cooling). UA1 and UA2 found the
Z
boson a few months later, in May 1983. Rubbia and van der Meer were promptly awarded the 1984 Nobel Prize in Physics, a most unusual step for the conservative Nobel Foundation.

The
W+
,
W
,
and
Z0
bosons, together with the photon (
γ
), comprise the four gauge bosons of the electroweak interaction.

The
W
and
Z
bosons decay to fermion pairs but neither the
W
nor the
Z
bosons have sufficient energy to decay into the highest-mass top quark. Neglecting phase space effects and higher order corrections, simple estimates of their branching fractions can be calculated from the coupling constants.

W bosons


W
bosons
can decay to a lepton and antilepton (one of them charged and another neutral) or to a quark and antiquark of complementary types (with opposite electric charges±+13 and +23). The decay width of the W boson to a quark–antiquark pair is proportional to the corresponding squared CKM matrix element and the number of quark colours,NC = 3 . The decay widths for the W+ boson are then proportional to:

Leptons Quarks

e+

ν
e
1
u

d
3 | V ud | 2 {\displaystyle |V_{\text{ud}}|^{2}}
u

s
3 | V us | 2 {\displaystyle |V_{\text{us}}|^{2}}
u

b
3 | V ub | 2 {\displaystyle |V_{\text{ub}}|^{2}}

μ+

ν
μ
1
c

d
3 | V cd | 2 {\displaystyle |V_{\text{cd}}|^{2}}
c

s
3 | V cs | 2 {\displaystyle |V_{\text{cs}}|^{2}}
c

b
3 | V cb | 2 {\displaystyle |V_{\text{cb}}|^{2}}

τ+

ν
τ
1 Decay to
t
is not allowed by energy conservation

Here,
e+
,
μ+
,
τ+
denote the three flavours of leptons (more exactly, the positive charged antileptons).
ν
e
,
ν
μ
,
ν
τ
denote the three flavours of neutrinos. The other particles, starting with
u
and
d
, all denote quarks and antiquarks (factorNC is applied). The various V i j {\displaystyle \,V_{ij}\,} denote the corresponding CKM matrix coefficients.

Unitarity of the CKM matrix implies that | V ud | 2 + | V us | 2 + | V ub | 2 = {\displaystyle ~|V_{\text{ud}}|^{2}+|V_{\text{us}}|^{2}+|V_{\text{ub}}|^{2}~=~} | V cd | 2 + | V cs | 2 + | V cb | 2 = 1 , {\displaystyle ~|V_{\text{cd}}|^{2}+|V_{\text{cs}}|^{2}+|V_{\text{cb}}|^{2}=1~,} thus each of two quark rowssums to 3. Therefore, the leptonic branching ratios of the W boson are approximately B ( e + ν e ) = {\displaystyle \,B(\mathrm {e} ^{+}\mathrm {\nu } _{\mathrm {e} })=\,} B ( μ + ν μ ) = {\displaystyle \,B(\mathrm {\mu } ^{+}\mathrm {\nu } _{\mathrm {\mu } })=\,} B ( τ + ν τ ) = {\displaystyle \,B(\mathrm {\tau } ^{+}\mathrm {\nu } _{\mathrm {\tau } })=\,} 1/9 The hadronic branching ratio is dominated by the CKM-favored
u

d
and
c

s
final states. The sum of the hadronic branching ratios has been measured experimentally to be67.60±0.27%, with B ( + ν ) = {\displaystyle \,B(\ell ^{+}\mathrm {\nu } _{\ell })=\,} 10.80±0.09% .

Z0 boson

See also: Weak charge


Z
bosons
decay into a fermion and its antiparticle. As the
Z0
boson is a mixture of the pre-symmetry-breaking
W0
and
B0
bosons (see weak mixing angle), each vertex factor includes a factor T 3 Q sin 2 θ W , {\displaystyle ~T_{3}-Q\sin ^{2}\,\theta _{\text{W}}~,} where T 3 {\displaystyle \,T_{3}\,} is the third component of the weak isospin of the fermion (the "charge" for the weak force), Q {\displaystyle \,Q\,} is the electric charge of the fermion (in units of the elementary charge), and θ W {\displaystyle \;\theta _{\text{W}}\;} is the weak mixing angle. Because the weak isospin ( T 3 ) {\displaystyle (\,T_{3}\,)} is different for fermions of different chirality, either left-handed or right-handed, the coupling is different as well.

The relative strengths of each coupling can be estimated by considering that the decay rates include the square of these factors, and all possible diagrams (e.g. sum over quark families, and left and right contributions). The results tabulated below are just estimates, since they only include tree-level interaction diagrams in the Fermi theory.

Particles Weak isospin ( T 3 ) {\displaystyle (\,T_{3}\,)} Relative factor Branching ratio
Name Symbols L R Predicted forx = 0.23 Experimental measurements
Neutrinos (all)
ν
e
,
ν
μ
,
ν
τ
1/2 0 3 ( 1 2 ) 2 {\displaystyle \,3({\tfrac {1}{2}})^{2}\,} 20.5% 20.00±0.06%
Charged leptons (all)
e
,
μ
,
τ
3 ( 1 2 + x ) 2 + 3 x 2 {\displaystyle \,3(-{\tfrac {1}{2}}+x)^{2}+3x^{2}\,} 10.2% 10.097±0.003%
Electron
e
1 2 + x {\displaystyle \,-{\tfrac {1}{2}}+x\,} x ( 1 2 + x ) 2 + x 2 {\displaystyle \,(-{\tfrac {1}{2}}+x)^{2}+x^{2}\,} 3.4% 3.363±0.004%
Muon
μ
1/2 +x x (−1/2 +x)2+x2 3.4% 3.366±0.007%
Tau
τ
1/2 +x x (−1/2 +x)2+x2 3.4% 3.367±0.008%
Hadrons
(except *
t
)
69.2% 69.91±0.06%
Down-type quarks
d
,
s
,
b
1/2 + 1/3x 1/3x 3 (−1/2 + 1/3x)2+ 3 (1/3x)2 15.2% 15.6±0.4%
Up-type quarks
u
,
c
1/22/3x 2/3x 3 (1/22/3x)2+ 3 (−2/3x)2 11.8% 11.6±0.6%
To keep the notation compact, the table uses x = sin 2 θ W . {\displaystyle ~x=\sin ^{2}\,\theta _{\text{W}}~.}
Here, L and R denote either the left- or right-handed chirality of the fermions, respectively.
* The impossible decay into a top quark-antiquark pair is left out of the table. The mass of the
t
quark plus a
t
is greater than the mass of the
Z
boson, so it does not have sufficient energy to decay into a
t

t
quark pair.
In 2018, the CMS collaboration observed the first exclusive decay of the Z boson to a ψ meson and a lepton-antilepton pair.
  1. Because neutrinos are neither affected by the strong force nor the electromagnetic force, and because the gravitational force between subatomic particles is negligible, by deduction (technically, abduction), such an interaction can only happen via the weak force. Since such an electron is not created from a nucleon (the nucleus left behind remains the same as before) and the departing electron is unchanged, except for the impulse imparted by the neutrino, this force interaction between the neutrino and the electron must be mediated by an electromagnetically neutral, weak force boson. Thus, since no other neutrino-interacting neutral force carrier is known, the observed interaction must have occurred by exchange of a
    Z0
    boson.
  2. However, see flavor-changing neutral current for a conjecture that a rare
    Z
    exchange might cause flavor change.
  3. The first prediction of
    Z
    bosons was made by Brazilian physicist José Leite Lopes in 1958, by devising an equation which showed the analogy of the weak nuclear interactions with electromagnetism. Steve Weinberg, Sheldon Glashow, and Abdus Salam later used these results to develop the electroweak unification, in 1973.
  4. Specifically:

    W
    → charged lepton + antineutrino


    W+
    → charged antilepton + neutrino
  5. Every entry in the lepton column can also be written as three decays, e.g. for the first row, as e + ν 1 , {\displaystyle \,\mathrm {e} ^{+}\,\mathrm {\nu } _{1}\,,} e + ν 2 , {\displaystyle \,\mathrm {e} ^{+}\,\mathrm {\nu } _{2}\,,} e + ν 3 , {\displaystyle \,\mathrm {e} ^{+}\,\mathrm {\nu } _{3}\,,} for every neutrino mass eigenstate, with decay widths proportional to | U e1 | 2 , {\displaystyle \,|U_{\text{e1}}|^{2}\,,} | U e2 | 2 , {\displaystyle \,|U_{\text{e2}}|^{2}\,,} | U e3 | 2 {\displaystyle \,|U_{\text{e3}}|^{2}\,} (PMNS matrix elements), but experiments at present that measure the decays can't discriminate between neutrino mass eigenstates: They measure total decay width of the sum of all three processes.
  6. In the Standard Model, right-handed neutrinos (and left-handed anti-neutrinos) do not exist; however, some extensions beyond the Standard Model allow them. If they do exist, they all have isospinT3 = 0 and electric chargeQ = 0, making them "sterile", i.e. unable to interact by either the weak or electric forces, and since their color charge is zero, no strong-force interactions either.
  1. Tanabashi, M.; et al. (Particle Data Group) (2018). "Review of Particle Physics". Physical Review D. 98 (3): 030001. Bibcode:2018PhRvD..98c0001T. doi:10.1103/PhysRevD.98.030001.
  2. M. Tanabashi et al. (Particle Data Group) (2018). "Review of Particle Physics". Physical Review D. 98 (3): 030001. Bibcode:2018PhRvD..98c0001T. doi:10.1103/PhysRevD.98.030001.
  3. Weinberg, S. (1967). "A Model of Leptons"(PDF). Physical Review Letters. 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/physrevlett.19.1264.[permanent dead link] — The electroweak unification paper.
  4. Weinberg, Steven (1993).Dreams of a Final Theory: The search for the fundamental laws of nature. Vintage Press. p. 94. ISBN 978-0-09-922391-7.
  5. Lopes, J. Leite (September 1999). "Forty years of the first attempt at the electroweak unification and of the prediction of the weak neutral boson". Brazilian Journal of Physics. 29 (3): 574–578. Bibcode:1999BrJPh..29..574L. doi:10.1590/S0103-97331999000300024. ISSN 0103-9733.
  6. "The Nobel Prize in Physics". Nobel Foundation. 1979. Archived from the original on 3 August 2004. Retrieved10 September 2008.
  7. "The discovery of the weak neutral currents". CERN Courier. 3 October 2004. Archived from the original on 2017-03-07. Retrieved2017-03-06.
  8. "Nobel Prize in Physics". Nobel Foundation. 1979. Archived from the original on 2004-08-03. Retrieved2004-02-20. (see also Nobel Prize in Physics on Wikipedia)
  9. "The UA2 Collaboration collection". Archived from the original on 2013-06-04. Retrieved2009-06-22.
  10. "Nobel Prize in physics" (Press release). Nobel Foundation. 1984. Archived from the original on 2004-08-03. Retrieved2004-02-20.
  11. Beringer, J.; et al. (Particle Data Group) (2012). "Gauge and Higgs bosons"(PDF). Physical Review D. 2012 Review of Particle Physics. 86 (1): 1. Bibcode:2012PhRvD..86a0001B. doi:10.1103/PhysRevD.86.010001. Archived(PDF) from the original on 2017-02-20. Retrieved2013-10-21.
  12. Amsler, C.; et al. (Particle Data Group) (2010). "PL B667, 1 (2008), and 2009 partial update for the 2010 edition"(PDF). Archived(PDF) from the original on 2011-06-05. Retrieved2010-05-19.
  13. Sirunyan, A.M.; et al. (CMS Collaboration) (2018). "Observation of theZ → ψ ℓ+ ℓ− decay inpp collisions ats = 13 TeV". Physical Review Letters. 121 (14): 141801. arXiv:1806.04213. doi:10.1103/PhysRevLett.121.141801. PMID 30339440. S2CID 118950363.

W and Z bosons
W and Z bosons Language Watch Edit 160 160 Redirected from Z boson In particle physics the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons These elementary particles mediate the weak interaction the respective symbols are W W and Z0 The W bosons have either a positive or negative electric charge of 1 elementary charge and are each other s antiparticles The Z0 boson is electrically neutral and is its own antiparticle The three particles each have a spin of 1 The W bosons have a magnetic moment but the Z0 has none All three of these particles are very short lived with a half life of about 3 10 25 s Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics W and Z0 BosonsCompositionElementary particleStatisticsBosonicFamilyGauge bosonInteractionsWeak interactionTheorizedGlashow Weinberg Salam 1968 DiscoveredUA1 and UA2 collaborations CERN 1983MassW 80 379 0 012 GeV c2 1 Z 91 1876 0 0021 GeV c2 2 Decay widthW 2 085 0 042 GeV c2 1 Z 2 4952 0 0023 GeV c2 2 Electric chargeW 1 e Z 0 eSpin1Weak isospinW 1 Z 0Weak hypercharge0 The W bosons are named after the weak force The physicist Steven Weinberg named the additional particle the Z particle 3 and later gave the explanation that it was the last additional particle needed by the model The W bosons had already been named and the Z bosons were named for having zero electric charge 4 The two W bosons are verified mediators of neutrino absorption and emission During these processes the W boson charge induces electron or positron emission or absorption thus causing nuclear transmutation The Z boson mediates the transfer of momentum spin and energy when neutrinos scatter elastically from matter a process which conserves charge Such behavior is almost as common as inelastic neutrino interactions and may be observed in bubble chambers upon irradiation with neutrino beams The Z boson is not involved in the absorption or emission of electrons or positrons Whenever an electron is observed as a new free particle suddenly moving with kinetic energy it is inferred to be a result of a neutrino interacting with the electron with the momentum transfer via the Z boson since this behavior happens more often when the neutrino beam is present In this process the neutrino simply strikes the electron via exchange of a boson and then scatters away from it transferring some of the neutrino s momentum to the electron a Contents 1 Basic properties 2 Relations to the weak nuclear force 2 1 W bosons 2 2 Z bosons 3 Predictions of the W W and Z0 bosons 4 Discovery 5 Decay 5 1 W bosons 5 2 Z0 boson 6 See also 7 Footnotes 8 References 9 External linksBasic properties EditThese bosons are among the heavyweights of the elementary particles With masses of 80 4 GeV c2 and 91 2 GeV c2 respectively the W and Z bosons are almost 80 times as massive as the proton heavier even than entire iron atoms Their high masses limit the range of the weak interaction By way of contrast the photon is the force carrier of the electromagnetic force and has zero mass consistent with the infinite range of electromagnetism the hypothetical graviton is also expected to have zero mass Although gluons are also presumed to have zero mass the range of the color force is limited for different reasons see color confinement All three bosons have particle spin s 1 The emission of a W or W boson either lowers or raises the electric charge of the emitting particle by one unit and also alters the spin by one unit At the same time the emission or absorption of a W boson can change the type of the particle for example changing a strange quark into an up quark The neutral Z boson cannot change the electric charge of any particle nor can it change any other of the so called charges such as strangeness baryon number charm etc The emission or absorption of a Z0 boson can only change the spin momentum and energy of the other particle See also weak neutral current Relations to the weak nuclear force Edit The Feynman diagram for beta decay of a neutron into a proton electron and electron antineutrino via an intermediate W boson The W and Z bosons are carrier particles that mediate the weak nuclear force much as the photon is the carrier particle for the electromagnetic force W bosons Edit The W bosons are best known for their role in nuclear decay Consider for example the beta decay of cobalt 60 60 27 Co 60 28 Ni e n e This reaction does not involve the whole cobalt 60 nucleus but affects only one of its 33 neutrons The neutron is converted into a proton while also emitting an electron called a beta particle in this context and an electron antineutrino n0 p e n e Again the neutron is not an elementary particle but a composite of an up quark and two down quarks udd It is in fact one of the down quarks that interacts in beta decay turning into an up quark to form a proton uud At the most fundamental level then the weak force changes the flavour of a single quark d u W which is immediately followed by decay of the W itself W e n eZ bosons Edit The Z0 boson is its own antiparticle Thus all of its flavour quantum numbers and charges are zero The exchange of a Z boson between particles called a neutral current interaction therefore leaves the interacting particles unaffected except for a transfer of spin and or momentum b Z boson interactions involving neutrinos have distinct signatures They provide the only known mechanism for elastic scattering of neutrinos in matter neutrinos are almost as likely to scatter elastically via Z boson exchange as inelastically via W boson exchange c Weak neutral currents via Z boson exchange were confirmed shortly thereafter also in 1973 in a neutrino experiment in the Gargamelle bubble chamber at CERN 7 Predictions of the W W and Z0 bosons Edit A Feynman diagram showing the exchange of a pair of W bosons This is one of the leading terms contributing to neutral Kaon oscillation Following the success of quantum electrodynamics in the 1950s attempts were undertaken to formulate a similar theory of the weak nuclear force This culminated around 1968 in a unified theory of electromagnetism and weak interactions by Sheldon Glashow Steven Weinberg and Abdus Salam for which they shared the 1979 Nobel Prize in Physics 8 c Their electroweak theory postulated not only the W bosons necessary to explain beta decay but also a new Z boson that had never been observed The fact that the W and Z bosons have mass while photons are massless was a major obstacle in developing electroweak theory These particles are accurately described by an SU 2 gauge theory but the bosons in a gauge theory must be massless As a case in point the photon is massless because electromagnetism is described by a U 1 gauge theory Some mechanism is required to break the SU 2 symmetry giving mass to the W and Z in the process The Higgs mechanism first put forward by the 1964 PRL symmetry breaking papers fulfills this role It requires the existence of another particle the Higgs boson which has since been found at the Large Hadron Collider Of the four components of a Goldstone boson created by the Higgs field three are absorbed by the W Z0 and W bosons to form their longitudinal components and the remainder appears as the spin 0 Higgs boson The combination of the SU 2 gauge theory of the weak interaction the electromagnetic interaction and the Higgs mechanism is known as the Glashow Weinberg Salam model Today it is widely accepted as one of the pillars of the Standard Model of particle physics particularly given the 2012 discovery of the Higgs boson by the CMS and ATLAS experiments The model predicts that W and Z0 bosons have the following masses m W 1 2 v g m Z 0 1 2 v g 2 g 2 displaystyle begin aligned m text W pm amp tfrac 1 2 vg m text Z 0 amp tfrac 1 2 v sqrt g 2 g 2 end aligned where g displaystyle g is the SU 2 gauge coupling g displaystyle g is the U 1 gauge coupling and v displaystyle v is the Higgs vacuum expectation value Discovery Edit The Gargamelle bubble chamber now exhibited at CERN Unlike beta decay the observation of neutral current interactions that involve particles other than neutrinos requires huge investments in particle accelerators and detectors such as are available in only a few high energy physics laboratories in the world and then only after 1983 This is because Z bosons behave in somewhat the same manner as photons but do not become important until the energy of the interaction is comparable with the relatively huge mass of the Z boson The discovery of the W and Z bosons was considered a major success for CERN First in 1973 came the observation of neutral current interactions as predicted by electroweak theory The huge Gargamelle bubble chamber photographed the tracks of a few electrons suddenly starting to move seemingly of their own accord This is interpreted as a neutrino interacting with the electron by the exchange of an unseen Z boson The neutrino is otherwise undetectable so the only observable effect is the momentum imparted to the electron by the interaction The discovery of the W and Z bosons themselves had to wait for the construction of a particle accelerator powerful enough to produce them The first such machine that became available was the Super Proton Synchrotron where unambiguous signals of W bosons were seen in January 1983 during a series of experiments made possible by Carlo Rubbia and Simon van der Meer The actual experiments were called UA1 led by Rubbia and UA2 led by Pierre Darriulat 9 and were the collaborative effort of many people Van der Meer was the driving force on the accelerator end stochastic cooling UA1 and UA2 found the Z boson a few months later in May 1983 Rubbia and van der Meer were promptly awarded the 1984 Nobel Prize in Physics a most unusual step for the conservative Nobel Foundation 10 The W W and Z0 bosons together with the photon g comprise the four gauge bosons of the electroweak interaction Decay EditThe W and Z bosons decay to fermion pairs but neither the W nor the Z bosons have sufficient energy to decay into the highest mass top quark Neglecting phase space effects and higher order corrections simple estimates of their branching fractions can be calculated from the coupling constants W bosons Edit W bosons can decay to a lepton and antilepton one of them charged and another neutral d or to a quark and antiquark of complementary types with opposite electric charges 1 3 and 2 3 The decay width of the W boson to a quark antiquark pair is proportional to the corresponding squared CKM matrix element and the number of quark colours N C 3 The decay widths for the W boson are then proportional to Leptons Quarkse ne 1 u d 3 V ud 2 displaystyle V text ud 2 u s 3 V us 2 displaystyle V text us 2 u b 3 V ub 2 displaystyle V text ub 2 m nm 1 c d 3 V cd 2 displaystyle V text cd 2 c s 3 V cs 2 displaystyle V text cs 2 c b 3 V cb 2 displaystyle V text cb 2 t nt 1 Decay to t is not allowed by energy conservation Here e m t denote the three flavours of leptons more exactly the positive charged antileptons ne nm nt denote the three flavours of neutrinos The other particles starting with u and d all denote quarks and antiquarks factor N C is applied The various V i j displaystyle V ij denote the corresponding CKM matrix coefficients e Unitarity of the CKM matrix implies that V ud 2 V us 2 V ub 2 displaystyle V text ud 2 V text us 2 V text ub 2 V cd 2 V cs 2 V cb 2 1 displaystyle V text cd 2 V text cs 2 V text cb 2 1 thus each of two quark rows sums to 3 Therefore the leptonic branching ratios of the W boson are approximately B e n e displaystyle B mathrm e mathrm nu mathrm e B m n m displaystyle B mathrm mu mathrm nu mathrm mu B t n t displaystyle B mathrm tau mathrm nu mathrm tau 1 9 The hadronic branching ratio is dominated by the CKM favored u d and c s final states The sum of the hadronic branching ratios has been measured experimentally to be 67 60 0 27 with B ℓ n ℓ displaystyle B ell mathrm nu ell 10 80 0 09 11 Z0 boson Edit See also Weak charge Z bosons decay into a fermion and its antiparticle As the Z0 boson is a mixture of the pre symmetry breaking W0 and B0 bosons see weak mixing angle each vertex factor includes a factor T 3 Q sin 2 8 W displaystyle T 3 Q sin 2 theta text W where T 3 displaystyle T 3 is the third component of the weak isospin of the fermion the charge for the weak force Q displaystyle Q is the electric charge of the fermion in units of the elementary charge and 8 W displaystyle theta text W is the weak mixing angle Because the weak isospin T 3 displaystyle T 3 is different for fermions of different chirality either left handed or right handed the coupling is different as well The relative strengths of each coupling can be estimated by considering that the decay rates include the square of these factors and all possible diagrams e g sum over quark families and left and right contributions The results tabulated below are just estimates since they only include tree level interaction diagrams in the Fermi theory Particles Weak isospin T 3 displaystyle T 3 Relative factor Branching ratioName Symbols L R Predicted for x 0 23 Experimental measurements 12 Neutrinos all ne nm nt 1 2 0 f 3 1 2 2 displaystyle 3 tfrac 1 2 2 20 5 20 00 0 06 Charged leptons all e m t 3 1 2 x 2 3 x 2 displaystyle 3 tfrac 1 2 x 2 3x 2 10 2 10 097 0 003 Electron e 1 2 x displaystyle tfrac 1 2 x x 1 2 x 2 x 2 displaystyle tfrac 1 2 x 2 x 2 3 4 3 363 0 004 Muon m 1 2 x x 1 2 x 2 x 2 3 4 3 366 0 007 Tau t 1 2 x x 1 2 x 2 x 2 3 4 3 367 0 008 Hadrons except t 69 2 69 91 0 06 Down type quarks d s b 1 2 1 3 x 1 3 x 3 1 2 1 3 x 2 3 1 3 x 2 15 2 15 6 0 4 Up type quarks u c 1 2 2 3 x 2 3 x 3 1 2 2 3 x 2 3 2 3 x 2 11 8 11 6 0 6 To keep the notation compact the table uses x sin 2 8 W displaystyle x sin 2 theta text W Here L and R denote either the left or right handed chirality of the fermions respectively f The impossible decay into a top quark antiquark pair is left out of the table The mass of the t quark plus a t is greater than the mass of the Z boson so it does not have sufficient energy to decay into a t t quark pair In 2018 the CMS collaboration observed the first exclusive decay of the Z boson to a ps meson and a lepton antilepton pair 13 See also EditBose Einstein statistics Description of the behavior of bosons List of particles Mathematical formulation of the Standard Model Mathematics of a particle physics model Weak charge W and Z bosons Hypothetical gauge bosons that arise from extensions of the electroweak symmetry of the Standard Model X and Y bosons analogous pair of bosons predicted by the Grand Unified Theory ZZ dibosonFootnotes Edit Because neutrinos are neither affected by the strong force nor the electromagnetic force and because the gravitational force between subatomic particles is negligible by deduction technically abduction such an interaction can only happen via the weak force Since such an electron is not created from a nucleon the nucleus left behind remains the same as before and the departing electron is unchanged except for the impulse imparted by the neutrino this force interaction between the neutrino and the electron must be mediated by an electromagnetically neutral weak force boson Thus since no other neutrino interacting neutral force carrier is known the observed interaction must have occurred by exchange of a Z0 boson However see flavor changing neutral current for a conjecture that a rare Z exchange might cause flavor change a b The first prediction of Z bosons was made by Brazilian physicist Jose Leite Lopes in 1958 5 by devising an equation which showed the analogy of the weak nuclear interactions with electromagnetism Steve Weinberg Sheldon Glashow and Abdus Salam later used these results to develop the electroweak unification 6 in 1973 Specifically W charged lepton antineutrino W charged antilepton neutrino Every entry in the lepton column can also be written as three decays e g for the first row as e n 1 displaystyle mathrm e mathrm nu 1 e n 2 displaystyle mathrm e mathrm nu 2 e n 3 displaystyle mathrm e mathrm nu 3 for every neutrino mass eigenstate with decay widths proportional to U e1 2 displaystyle U text e1 2 U e2 2 displaystyle U text e2 2 U e3 2 displaystyle U text e3 2 PMNS matrix elements but experiments at present that measure the decays can t discriminate between neutrino mass eigenstates They measure total decay width of the sum of all three processes a b In the Standard Model right handed neutrinos and left handed anti neutrinos do not exist however some extensions beyond the Standard Model allow them If they do exist they all have isospin T 3 0 and electric charge Q 0 making them sterile i e unable to interact by either the weak or electric forces and since their color charge is zero no strong force interactions either References Edit a b Tanabashi M et al Particle Data Group 2018 Review of Particle Physics Physical Review D 98 3 030001 Bibcode 2018PhRvD 98c0001T doi 10 1103 PhysRevD 98 030001 a b M Tanabashi et al Particle Data Group 2018 Review of Particle Physics Physical Review D 98 3 030001 Bibcode 2018PhRvD 98c0001T doi 10 1103 PhysRevD 98 030001 Weinberg S 1967 A Model of Leptons PDF Physical Review Letters 19 21 1264 1266 Bibcode 1967PhRvL 19 1264W doi 10 1103 physrevlett 19 1264 permanent dead link The electroweak unification paper Weinberg Steven 1993 Dreams of a Final Theory The search for the fundamental laws of nature Vintage Press p 94 ISBN 978 0 09 922391 7 Lopes J Leite September 1999 Forty years of the first attempt at the electroweak unification and of the prediction of the weak neutral boson Brazilian Journal of Physics 29 3 574 578 Bibcode 1999BrJPh 29 574L doi 10 1590 S0103 97331999000300024 ISSN 0103 9733 The Nobel Prize in Physics Nobel Foundation 1979 Archived from the original on 3 August 2004 Retrieved 10 September 2008 The discovery of the weak neutral currents CERN Courier 3 October 2004 Archived from the original on 2017 03 07 Retrieved 2017 03 06 Nobel Prize in Physics Nobel Foundation 1979 Archived from the original on 2004 08 03 Retrieved 2004 02 20 see also Nobel Prize in Physics on Wikipedia The UA2 Collaboration collection Archived from the original on 2013 06 04 Retrieved 2009 06 22 Nobel Prize in physics Press release Nobel Foundation 1984 Archived from the original on 2004 08 03 Retrieved 2004 02 20 Beringer J et al Particle Data Group 2012 Gauge and Higgs bosons PDF Physical Review D 2012 Review of Particle Physics 86 1 1 Bibcode 2012PhRvD 86a0001B doi 10 1103 PhysRevD 86 010001 Archived PDF from the original on 2017 02 20 Retrieved 2013 10 21 Amsler C et al Particle Data Group 2010 PL B667 1 2008 and 2009 partial update for the 2010 edition PDF Archived PDF from the original on 2011 06 05 Retrieved 2010 05 19 Sirunyan A M et al CMS Collaboration 2018 Observation of the Z ps ℓ ℓ decay in pp collisions at s 13 TeV Physical Review Letters 121 14 141801 arXiv 1806 04213 doi 10 1103 PhysRevLett 121 141801 PMID 30339440 S2CID 118950363 External links Edit Media related to W and Z bosons at Wikimedia Commons The Review of Particle Physics the ultimate source of information on particle properties The W and Z particles a personal recollection by Pierre Darriulat When CERN saw the end of the alphabet by Daniel Denegri W and Z particles at Hyperphysics Retrieved from https en wikipedia org w index php title W and Z bosons amp oldid 1050406400, wikipedia, wiki, book,

books

, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.